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For models with cross-section or panel data, the disturbances may be
clustered in two dimensions.

Unfortunately, the finite-sample properties of two-way cluster-robust
tests and confidence intervals are often poor.

There can also be undefined standard errors when a cluster-robust
variance estimator (CRVE) is not positive definite.

We discuss ways to improve inference with two-way clustering.
e Two existing methods for dealing with undefined standard errors.
@ A new method that completely avoids undefined standard errors.
@ Several new two-way CRVEs based on the cluster jackknife.

Simulations for models with two-way fixed effects suggest that a
cluster-jackknife CRVE based on the new method often yields
surprisingly accurate inferences.
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ygh:Xghﬁ+ugh, g=1...,G, h=1,...,H. )

The variance matrix of the score vector s = X 'u is
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The variance matrix of § = (X' X)X Ty is

Ve=X'X)'E(X'X) ' =Ve+ V- Vi (5)
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The empirical analog of (5) is the three-term two-way CRVE

0 = Vo + V- U, 7)
where
o IN-1) o »
i 0 (S0 e

and likewise for V; and V. Here I < GH is the number of intersections.

But V1(3) may not be positive definite!
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But V1(2) is asymptotically invalid when the scores are independent or
only correlated at the intersection level, so that Vg = V.

In that case, V¢ ~ Vg ~ V}. Therefore,

v = Vg + Uy~ 20, (10)
whereas 5
A RUSS RN R VPR ) 11)

Thus, in this case, Vl(z) is approximately twice as large as Vl(B)

twice as large as it should be.

Unfortunately, V1(3) is not necessarily positive semi-definite, and its

diagonal elements may be negative.

,and
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Cameron, Gelbach, and Miller (2011)suggested a work-around to
avoid negative diagonals, which Stata 18 now implements.

Vl(s), say A1, ..., Ak

When any of them is not positive, replace Vl(s) by

Compute the eigenvalues of

A1(3+) _ LIA+UT,

where U is the k x k matrix of eigenvectors, and A" is a diagonal
matrix with typical diagonal element /\j+ = max{A;,0}.
(3+)

Instead of 0, we use 7 = 107'2, so that V;” " is positive definite.
@ Wald and t-statistics based on V1(3+) may be extremely large.

@ Replacing Vl(s) by V1(3+) can change all the standard errors.

° se(ﬁj) is not invariant to nonsingular transformations of the
remaining columns of the matrix X.

@ Precisely how fixed effects or other dummy variables are specified

may affect se(Bj).
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Also suggested in Davezies, D'Haultfoeuille, and Guyonvarch (2025).
For the hypothesis that RB = r, the three Wald statistics are

Ws = (Rp—r) (RVVRT)(RB 1),
Ws = (RB—+) (RVGR") "1 (RB —r), and (12)
Wy = (RS —1)T(RVGRT) YRS —r

~—

Our max-se procedure uses the statistic
Wmin = min {max{Wg,, 0}, WG, WH}, (13)

where max{Ws3,0} = 0 if W3 is either negative or undefined.
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Compute three test statistics. Use the smallest one that is positive.
Also suggested in Davezies, D'Haultfoeuille, and Guyonvarch (2025).
For the hypothesis that RB = r, the three Wald statistics are

Ws = (Rp—r) (RVVRT)(RB 1),
Ws = (RB—+) (RVGR") "1 (RB —r), and (12)
Wy = (RS —1)T(RVGRT) YRS —r

~—

Our max-se procedure uses the statistic
Wmin = min {max{Wg,, 0}, WG, WH}, (13)

where max{Ws3,0} = 0 if W3 is either negative or undefined.

(2)

We denote the variance and standard error estimators based on V;”/,
Vl( ), and Vl( ™ as CVl( ) CVl( ) and CV( ) , respectively, and the one
that is implicit in (13) as the CV( ax) estlmator
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The OLS estimates of f when each cluster in the | dimension is
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Two-Way Cluster Jackknife CRVEs

Let] € {G,H,I}, and let j denote the corresponding lower-case letter.

The OLS estimates of f when each cluster in the | dimension is
omitted in turn are

By = XX -X/X) ' (X'y-Xy), j=1...] (14)
Then the component cluster jackknife variance matrix estimators are
K J=1d A A a4 . .
V<= B0 BB BT for (i1} = {g, G} {h,HY i 1)
j=1
Thus the three-term jackknife CRVE is (15)

v =V v -, (16)
which is analogous to (7). Notation is based on HC3.
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Computation
First, calculate the cluster-level matrices and vectors

X/X; and X'y, j=1,...,], for{jJ} = {g,G}, {hH} {i,I}. (17)

The ones for the intersections can be computed in a single pass over
the N observations. The others are just sums of some of them.
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X/X; and X'y, j=1,...,], for{jJ} = {g,G}, {hH} {i,I}. (17)

The ones for the intersections can be computed in a single pass over
the N observations. The others are just sums of some of them.

With two-way fixed effects in the G and H dimensions,
y =ZB, + Dy +D"§ +u. (18)

Now X = [Z D¢ DH], and k = p+ G+ H — 1, and the matrices
XX — X;Xg and X' X — X;Xh cannot be inverted.
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y =ZB, + Dy +D"§ +u. (18)

Now X = [Z D¢ DH], and k = p+ G+ H — 1, and the matrices
XX — X;Xg and X' X — X;Xh cannot be inverted.

Simplest approa%h is to replace the inverse in (14) by a generalized
inverse. Then V]K in (16) can only be calculated as a p x p matrix.
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X/X; and X'y, j=1,...,], for{jJ} = {g,G}, {hH} {i,I}. (17)
The ones for the intersections can be computed in a single pass over

the N observations. The others are just sums of some of them.

With two-way fixed effects in the G and H dimensions,

y =ZB, + Dy +D"§ +u. (18)
Now X = [Z D¢ DH], and k = p+ G+ H — 1, and the matrices
XX — X;Xg and X' X — X;Xh cannot be inverted.

Simplest approa%h is to replace the inverse in (14) by a generalized
inverse. Then V]K in (16) can only be calculated as a p x p matrix.

. 3 .
Computing CVé ) and friends for (18) can be costly when G and H are
not fairly small.
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We do this for t-statistics based on CVj as well.
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© Employ a t-distribution with an estimated degrees-of-freedom

parameter, and maybe an estimated scale parameter, as in Bell and
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Student’s t distribution with min{G, H} — 1 degrees of freedom is
normally used for t-statistics based on CVj.

We do this for t-statistics based on CVj as well.
There are at least two possible alternatives:

© Employ a t-distribution with an estimated degrees-of-freedom
parameter, and maybe an estimated scale parameter, as in Bell and
McCaffrey (2002), Imbens and Kolesar (2016), and Hansen (2023).

@ Use the wild cluster bootstrap (MacKinnon, Nielsen, and Webb
2021) or the pigeonhole bootstrap (Owen, 2007).
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@ Use the wild cluster bootstrap (MacKinnon, Nielsen, and Webb
2021) or the pigeonhole bootstrap (Owen, 2007).

o For two-way clustering, no version of the wild cluster bootstrap
can replicate the intra-cluster covariances in the residuals.
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We do this for t-statistics based on CVj as well.
There are at least two possible alternatives:

© Employ a t-distribution with an estimated degrees-of-freedom
parameter, and maybe an estimated scale parameter, as in Bell and
McCaffrey (2002), Imbens and Kolesar (2016), and Hansen (2023).

@ Use the wild cluster bootstrap (MacKinnon, Nielsen, and Webb
2021) or the pigeonhole bootstrap (Owen, 2007).
o For two-way clustering, no version of the wild cluster bootstrap
can replicate the intra-cluster covariances in the residuals.
o The pigeonhole bootstrap is an ingenious generalization of the
ordinary pairs (resampling) bootstrap for one-way clustering.
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Student’s t distribution with min{G, H} — 1 degrees of freedom is
normally used for t-statistics based on CVj.

We do this for t-statistics based on CVj as well.
There are at least two possible alternatives:

© Employ a t-distribution with an estimated degrees-of-freedom
parameter, and maybe an estimated scale parameter, as in Bell and
McCaffrey (2002), Imbens and Kolesar (2016), and Hansen (2023).

@ Use the wild cluster bootstrap (MacKinnon, Nielsen, and Webb
2021) or the pigeonhole bootstrap (Owen, 2007).

o For two-way clustering, no version of the wild cluster bootstrap
can replicate the intra-cluster covariances in the residuals.

o The pigeonhole bootstrap is an ingenious generalization of the
ordinary pairs (resampling) bootstrap for one-way clustering.

o But pairs bootstrap typically performs worse than WCR bootstrap
(MacKinnon and Webb, TPM 2017; MacKinnon, 2023).
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Theorem 1.

Let V3 denote any of the three jackknife CRVEs — CV3(2), CV3(3), and
CV3(maX) — and let Var(B) be given in (5).

James G. MacKinnon

Jackknife Inference Workshop to Honour Lynda Khalaf, October 17, 2025 12 /27



Consistency of the Cluster-Jackknife CRVE

Consistency of the Cluster-Jackknife CRVE

Theorem 1.

Let V3 denote any of the three jackknife CRVEs — CV3(2), CV3(3), and
CV3(maX) — and let Var(B) be given in (5).

Then, under suitable assumptions, (Var(8))~1V; =)

James G. MacKinnon Jackknife Inference Workshop to Honour Lynda Khalaf, October 17, 2025 12 /27



Consistency of the Cluster-Jackknife CRVE

Consistency of the Cluster-Jackknife CRVE

Theorem 1.

Let V3 denote any of the three jackknife CRVEs — CV3(2), CV3(3), and
CV3(maX) — and let Var(B) be given in (5).

Then, under suitable assumptions, (Var(8))~1V; =)
It follows that

(Var(B))"2(B — Bo) — N(0, ). (19)

The assumptions and proof follow Yap (2025).
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Theorem 1.

Let V3 denote any of the three jackknife CRVEs — CV3(2), CV3(3), and
CV3(maX) — and let Var(B) be given in (5).

Then, under suitable assumptions, (Var(8))~1V; =)

It follows that

A\ — 5 d
(Var(B))™"2(B = Bo) = N(0,Iy). (19)
The assumptions and proof follow Yap (2025).

He demonstrates the consistency of V; without assuming that the
disturbances are generated as separately exchangeable arrays, as
Davezies, D’Haultfoeuille, and Guyonvarch (2018,2025) do.
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Consistency of the Cluster-Jackknife CRVE

Theorem 1.

Let V3 denote any of the three jackknife CRVEs — CV3(2), CV3(3), and
CV3(maX) — and let Var(B) be given in (5).

Then, under suitable assumptions, (Var(8))~1V; =)

It follows that

(Var(B))"2(B — Bo) — N(0, ). (19)

The assumptions and proof follow Yap (2025).

He demonstrates the consistency of V; without assuming that the
disturbances are generated as separately exchangeable arrays, as
Davezies, D’Haultfoeuille, and Guyonvarch (2018,2025) do.

Yap’s assumptions are weaker, and his method of proof is simpler.
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The disturbances are generated so that cluster fixed effects do not
eliminate intra-cluster correlation. We use factor models of the form

Zgni = 0gCq + 0 &l + Oclgni if iis odd, 0)
Zohi = (TgC; + oy, g,% + 0eConi ifiis even.

James G. MacKinnon Jackknife Inference Workshop to Honour Lynda Khalaf, October 17, 2025 13 /27



Simulation Experiments

Simulation Experiments

The disturbances are generated so that cluster fixed effects do not
eliminate intra-cluster correlation. We use factor models of the form

Zgni = 0gCq + 0 &l + Oclgni if iis odd, 0)
Zohi = (TgC§ + oy, 6,% + 0eConi ifiis even.

° Cél, and C; are N(0, 1) random effects which apply to the odd-
numbered and even-numbered observations within the ¢ cluster.

James G. MacKinnon Jackknife Inference Workshop to Honour Lynda Khalaf, October 17, 2025 13 /27



Simulation Experiments

Simulation Experiments

The disturbances are generated so that cluster fixed effects do not
eliminate intra-cluster correlation. We use factor models of the form

Zgni = 0gCq + 0 &l + Oclgni if iis odd, 0)
Zohi = (TgC§ + oy, 6,% + 0eConi ifiis even.

° Cél, and C; are N(0, 1) random effects which apply to the odd-
numbered and even-numbered observations within the ¢ cluster.

e (] and {7 are N(0, 1) random effects which apply to the
odd-numbered and even-numbered observations within the i
cluster. The {g; are independent standard normals.

James G. MacKinnon Jackknife Inference Workshop to Honour Lynda Khalaf, October 17, 2025 13 /27



Simulation Experiments

Simulation Experiments

The disturbances are generated so that cluster fixed effects do not
eliminate intra-cluster correlation. We use factor models of the form

Zgni = 0gCq + 0 &l + Oclgni if iis odd, 0)
Zohi = (TgC§ + oy, 6,% + 0eConi ifiis even.

° Cél, and C; are N(0, 1) random effects which apply to the odd-
numbered and even-numbered observations within the ¢ cluster.

e (] and {7 are N(0, 1) random effects which apply to the
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0 = (pj/ (1 —pj))"/* forj =g, h.
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The disturbances are generated so that cluster fixed effects do not
eliminate intra-cluster correlation. We use factor models of the form

Zgni = 0gCq + 0 &l + Oclgni if iis odd, 0)
Zohi = (TgC§ + oy, 6,% + 0eConi ifiis even.

° Cél, and C; are N(0, 1) random effects which apply to the odd-
numbered and even-numbered observations within the ¢ cluster.

e (] and {7 are N(0, 1) random effects which apply to the
odd-numbered and even-numbered observations within the i
cluster. The {g; are independent standard normals.

@ 0, and 0y, are specified as functions of correlations p, and py,, with
0 = (pj/ (1 —pj))"/* forj =g, h.

@ The value of ¢ is (1 — (75 — 02)1/2, s0 that Var(zg,;) = 1.
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Simulation Experiments

The cluster sizes in the G dimension are given by

N, = |N C‘f"p”g/(,;) —1,...,G—1, 1)
Yiz1exp(7j/G)

where [x| denotes the integer part of x. Then Ng = N — 2;;:—11 N,.
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(21), perhaps with a different 7, is also used in the H dimension.
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Liaexp(vi/G) |
where [x| denotes the integer part of x. Then Ng = ZG ' N;.

(21), perhaps with a different 7, is also used in the H dimension.
Assuming that the distributions are independent, Ny ~ NgNj,/N.

In a final step, the cluster sizes are adjusted to ensure that they are all
integers with N = Y0 Ny = Y301 Ny = Y¢ g Y50 Noie
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Simulation Experiments

The cluster sizes in the G dimension are given by

Ng = [ exp(18/G) ¢=1,...,G—1, 1)
Liaexp(vi/G) |
where [x| denotes the integer part of x. Then Ng = ZG ' N;.

(21), perhaps with a different 7, is also used in the H dimension.
Assuming that the distributions are independent, Ny ~ NgNj,/N.

In a final step, the cluster sizes are adjusted to ensure that they are all
integers with N = Y0 Ny = Y301 Ny = Y¢ g Y50 Noie

The experiments currently involve normally distributed regressors,
which follow the factor model (20).

In most experiments, we set pg = o3, = 0.2 for the regressors and
pg = pp = 0.1 for the disturbances.
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Simulation Experiments

Figure 1. Rejection frequencies as functions of cluster size variation

Rej. Freq. (a) 7 varies in both dimensions Rej. Freq. (b) ~ varies in the G dimension
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e N =10,000,G=15,H=12,1=180,p = 10, k = 36.

® Regressors are from factor model (20), with o = pj = 0.2.

e Disturbances are from factor model (20), with p, = p, = 0.1.
e Results are based on 100,000 replications.
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Simulation Experiments

Figure 2. Rejection frequencies as functions of disturbance correlations

Rej. Freq. (a) G=15,H=12,p=5 Rej. Freq. (b) G=30,H=24,p=15
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e (a) N =10,000,G =15H = 12,1 = 180,p =5, 7 = 2.

e (b) N =40,000,G=30,H=124,1=720,p =15y =2

® Regressors are from factor model (20), with pg = o5, = 0.2.

e Disturbances are from factor model (20), with p; = p;, that vary.
e Results are based on 100,000 replications.

James G. MacKinnon Jackknife Inference Workshop to Honour Lynda Khalaf, October 17, 2025 16 / 27



Simulation Experiments

Figure 3. Rejection frequencies as functions of regressor correlations

Rej. Freq. (a) pj; and pj vary together Rej. Freq. (b) py = 0.1 and pj; varies
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e N =10,000,G=15H=12,1=180,p =5,7 =2.

e Disturbances are from factor model (20), with p, = p, = 0.1.

e Regressors are from factor model; one or both values of p* vary.
e Results are based on 100,000 replications.
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Simulation Experiments

Figure 4. Rejection frequencies as functions of number of regressors

Rej. Freq. (a) N =10,000, G =15, H =12 Rej. Freq. (b) N =40,000, G =30, H =24
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e (a) N =10,000,G =15 H =12,1 =180, v = 2.

e (b) N = 40,000, G =30,H = 24,1 =720, v = 2.

® Regressors are from factor model (20), with oy = pj; = 0.2.

e Disturbances are from factor model (20), with p, = p, = 0.1.
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Simulation Experiments

Figure 5. Rejection frequencies as functions of numbers of clusters

Rej. Freq. (a) p=5 Rej. Freq. (b) p=15
. 3) @
0.15 Cvy Vi
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0.10
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0.00 — T T T T T T — G 0.00 - T T T T T T —G
10 15 20 25 30 35 40 45 10 15 20 25 30 35 40 45
e The value of G varies from 5 to 45 by 5, with H = 4G/5.
e The value of N varies from 1,111 to 90,000.
® Regressors are from factor model (20), with pg = o5, = 0.2.
e Disturbances are from factor model (20), with p, = p, = 0.1.
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Simulation Experiments

Figure 6. Rejection frequencies as functions of
fraction of empty intersections
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e N = 6000 in Panel (a) and N = 12000 in Panel (b).

o The first 5 regressors are from the model (20), with p; = o3 = 0.2.
e The extra 5 regressors are binary and equal 1 with probability 0.25.
e Disturbances are from factor model (20), with p, = p, = 0.1.
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Simulation Experiments

Figure 7. Power functions for eight tests
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e N =10,000,G=15H=12,1=180,p=5,v=2.
e Regressors and disturbances are from factor model (20).

o All coefficients except B1 equal 0.
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The first example is based on Alsan (2015), which studies the impact of
the tsetse fly on economic development in Africa.
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@ The paper tests the extent to which the tsetse fly inhibited political
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Empirical Examples

Empirical Examples

The first example is based on Alsan (2015), which studies the impact of
the tsetse fly on economic development in Africa.

@ The main explanatory variable is the TSI or “Tsetse Suitability
Index.” It measures how suitable an area is to support the tsetse
fly, which carries a parasite that affects humans and livestock.

@ The paper tests the extent to which the tsetse fly inhibited political
and agriculatural development in parts of Africa.

@ There are seven different outcome variables. These are regressed
on TSI and various controls.

@ Sample sizes vary from 315 to 485. There are two clustering
dimensions, country and “cultural province.” Most results use
one-way clustering by the latter.

@ There are 44 countries, 43 or 44 provinces, and between 112 and
142 non-empty intersections. Since 442 = 1936, I << GH.
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Empirical Examples
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Empirical Examples

The second example studies the effects of minimum wages on
earnings for young people in Canada, using Labour Force Survey data.
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Empirical Examples

The second example studies the effects of minimum wages on
earnings for young people in Canada, using Labour Force Survey data.

@ Individuals aged 18-24 who have been in Canada less than ten
years. 28,599 observations in 10 provinces for 2008 to 2019.

@ The dependent variable is the log of weekly earnings, and the
regressor of interest is the log of the minimum wage, which varies
by province. There are 63 distinct values.
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The second example studies the effects of minimum wages on
earnings for young people in Canada, using Labour Force Survey data.

@ Individuals aged 18-24 who have been in Canada less than ten
years. 28,599 observations in 10 provinces for 2008 to 2019.

@ The dependent variable is the log of weekly earnings, and the
regressor of interest is the log of the minimum wage, which varies
by province. There are 63 distinct values.

logearn,,,,, = « + plogmw, , + v big city;,,, 4 0 older;y

+ year, + month,, + prov, + €ipmt
e Observations per province (H = 10) vary from 163 to 6554.
@ Observations per year (G = 12) vary from 2051 to 2723.
e Observations per intersection (I = 120) vary from 3 to 710.

@ Coefficient estimate is 0.2934, with standard errors between 0.0254
for HC; and 0.1663 for CV{?),
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Empirical Examples

We also run placebo regressions, which generalize the idea of
“placebo laws” proposed in Bertrand, Duflo, and Mullainathan (2004).
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We also run placebo regressions, which generalize the idea of
“placebo laws” proposed in Bertrand, Duflo, and Mullainathan (2004).

@ The idea is to add a randomly generated regressor that looks
similar to the minimum wage to the actual regression.

@ This is done many times (100,000 in our simulations). Placebo
regressor changes across simulations, but not the regressand.

@ Since the placebo regressors are random, they should have no
explanatory power if the regression is specified correctly.

o If a test at the .05 level rejects much more or less often than 5%,
then we should not trust results of that test.

@ We model the placebo minimum wage as a two-stage process at
the province-year level.

@ Itincreases if random variables Vp and vy both exceed threshold
values. The increase is a random amount of 0.25, 0.50, 0.75, or 1.00.

The details matter, and current results are preliminary.
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Empirical Examples

Figure 9. P Values and Placebo Regression Rejection Frequencies
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@ We propose two-way cluster jackknife CRVEs. New CV3(3)

CVémaX) estimators often work very well indeed. They can
over-reject or under-reject, but usually quite modestly.

@ In contrast, t-statistics based on the widely-used CVI(B) CRVE for
OLS with two-way clustering often over-reject severely.

@ Using an eigen-decomposition when Vl(s) is not positive definite
yields CV1(3+) (Stata default). It is parametrization-dependent!

© Fixed effects must be handled with care when computing
cluster-jackknife (CV3) CRVEs for two-way clustering.

© The CV3(2) CRVE is cheaper but usually under-rejects, sometimes
severely. So does CV_QE3+ in some cases with fixed effects.

@ The number of regressors and their features matter!
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