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Introduction

Introduction

We show that existing methods for cluster-robust inference in
logistic regression models have mediocre finite-sample properties.
We propose alternative procedures based on the cluster jackknife
and/or the wild cluster bootstrap.
Our bootstrap procedures are computationally simple because
they are based on empirical score vectors at the cluster level.
First-order conditions are linearized to obtain approximations to
the delete-one-cluster estimates needed for the jackknife.
We also propose four wild cluster bootstrap tests based on the
same linear approximation.
Two of these transform the scores before bootstrapping, as in
MacKinnon, Nielsen, and Webb (JAE 2023).
Two are based on restricted scores, and two are based on
unrestricted scores.
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Related Literature

Related Literature

The wild cluster bootstrap for linear regression models was proposed
in Cameron, Gellbach, and Miller (ReStat 2008).

Its asymptotic validity was proved in Djogbenou, MacKinnon,
and Nielsen (JoE 2019).
Its finite-sample properties were studied in MacKinnon and Webb
(JAE 2017, TPM 2017, EctsJ 2018).
The relationship with randomization inference was explored in
Canay, Santo, and Shaikh (REStat 2021).
Improved versions related to the cluster jackknife were proposed
in MacKinnon, Nielsen, and Webb (JAE 2023).

A computationally efficient Stata package called boottest is described
in Roodman, MacKinnon, Nielsen, and Webb (SJ 2019). Computational
issues are discussed in MacKinnon (E&S 2023).
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Related Literature

Using the delete-one jackknife to estimate variances was studied in
Efron and Stein (Ann. Stat. 1981).

An early application to heteroskedasticity-robust estimation was the
(original) HC3 estimator of MacKinnon and White (JoE 1985).

Using the cluster jackknife was proposed in Bell and McCaffrey (SM
2002), but they computed it like HC3.

Better computational methods for not-small clusters were discussed in
MacKinnon, Nielsen, and Webb (SJ 2023).

It provides a Stata package called summclust, which computes
the CV3 variance matrix as well as cluster-level measurs of
leverage and influence.

Hansen (2024, JAE 2025) proves interesting results about CV3 and
proposes an inferential procedure based on adjusting the standard
error and computing a degrees-of-freedom parameter.

Hansen provides a Stata package called jregress.
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Logistic Regression (Logit) Models

Logistic Regression Models

There are N observations divided among G clusters, with the g th

cluster containing Ng of them.

Let ygi (binary) be the response for observation i in cluster g.

Pr(ygi = 1 |Xgi) = Λ(Xgiβ), g = 1, . . . , G, i = 1, . . . , Ng. (1)

Here Xgi contains k explanatory variables, with β to be estimated.

In (1), Λ(·) is the logistic function,

Λ(x) =
1

1 + e−x =
ex

1 + ex , (2)

which has first derivative

λ(x) =
ex

(1 + ex)2 = Λ(x)Λ(−x). (3)
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Logistic Regression (Logit) Models

The pseudo-loglikelihood function for (1) is

ℓ(y, β) =
G

∑
g=1

Ng

∑
i=1

(
ygi log Λ(Xgiβ) + (1 − ygi) log Λ(−Xgiβ)

)
. (4)

Using the fact that the first derivative of Λ(x) is Λ(x)Λ(−x), the score
vector for the g th cluster is simply

sg(β) =
Ng

∑
i=1

sgi(β) =
Ng

∑
i=1

(
ygi − Λ(Xgiβ)

)
Xgi. (5)

Thus, the first-order condition for β̂ can be written as

ŝ =
G

∑
g=1

ŝg =
G

∑
g=1

sg(β̂) = 0. (6)

When the observations are independent,

N1/2(β̂ − β0)
a
=
(

plim N−1H(β0)
)−1

N−1/2
N

∑
i=1

si(β0). (7)
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ŝg =
G

∑
g=1

sg(β̂) = 0. (6)

When the observations are independent,

N1/2(β̂ − β0)
a
=
(

plim N−1H(β0)
)−1

N−1/2
N

∑
i=1

si(β0). (7)

James G. MacKinnon Inference for Logistic Regression Models Vanderbilt University, April 16, 2025 6 / 37



Logistic Regression (Logit) Models

The pseudo-loglikelihood function for (1) is

ℓ(y, β) =
G

∑
g=1

Ng

∑
i=1

(
ygi log Λ(Xgiβ) + (1 − ygi) log Λ(−Xgiβ)

)
. (4)

Using the fact that the first derivative of Λ(x) is Λ(x)Λ(−x), the score
vector for the g th cluster is simply

sg(β) =
Ng

∑
i=1

sgi(β) =
Ng

∑
i=1

(
ygi − Λ(Xgiβ)

)
Xgi. (5)

Thus, the first-order condition for β̂ can be written as
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Logistic Regression (Logit) Models

In the absence of clustering, (7) leads to the variance matrix estimator

V̂(β̂) = (X⊤Υ(β̂)X)−1, (8)

where Υ(β) is an N × N diagonal matrix with typical diagonal element

Υi(β) = Λ(Xiβ)Λ(−Xiβ); (9)

Note that, for the logit model, X⊤Υ(β)X = −H(β). This is not true for
the probit model.

The usual cluster-robust variance matrix (CRVE) is

CV1I : V̂1I =
G

G − 1
N − 1
N − k

(X⊤Υ̂X)−1

(
G

∑
g=1

ŝgŝ⊤g

)
(X⊤Υ̂X)−1. (10)

The empirical score vectors here are
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The Cluster Jackknife

The Cluster Jackknife

If β̂(g) is the vector of delete-one estimates when cluster g is deleted,

CV3: V̂3(β̂) =
G − 1

G

G

∑
g=1

(β̂(g) − β̂)(β̂(g) − β̂)⊤. (12)

Another cluster jackknife CRVE uses β̄ instead of β̂.

Computing CV3 requires G + 1 nonlinear estimations.

We focus on t-statistics of the form

ta =
a⊤(β̂ − β0)

(a⊤V̂a)1/2
. (13)

For the restriction βk = 0, we have ta = β̂k/ŝk, where ŝk is the square
root of the k th diagonal element of V̂.

It is customary to compare ta with the t(G − 1) distribution.
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Methods Based on Linearization

Methods Based on Linearization

For the logit model, the contributions to the information matrix are

Jg(β) =
Ng

∑
i=1

Λgi (β)Λgi (−β)Xgi(β)⊤Xgi(β), g = 1, . . . , G. (14)

The estimates from linearizing the model around β are then

b(β) =

( G

∑
g=1

Jg(β)

)−1 G

∑
g=1

sg(β) = J(β)−1s(β). (15)

When the sg(β) and Jg(β) are evaluated at β0, the vector b(β0)

provides a linear approximation to β̂ − β0.

After we estimate the logit model, we form the cluster-level vectors
ŝg = sg(β̂) and matrices Ĵg = Jg(β̂) for g = 1, . . . , G.
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Methods Based on Linearization

The linear approximations to β̂(g) − β̂ when each cluster is omitted in
turn are then

b̂
(g)

= (Ĵ − Ĵg)
−1(ŝ − ŝg), g = 1, . . . , G. (16)

We can use these approximations to compute cluster-jackknife
variance matrices. The one comparable to (12) is

CV3L: V̂3L(β̂) =
G − 1

G

G

∑
g=1

b̂
(g)

b̂
(g)⊤

. (17)

The linear approximation (15) can also be used to compute wild
cluster linearized, or WCL, bootstraps.

Once the logit model has been estimated (possibly subject to the
restrictions to be tested) and linearized, computations are identical to
those for the WCR/WCU bootstraps for linear regression models.

The same linearization can also be used to obtain CV2L.
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Four WCL Bootstrap Methods

Four WCL Bootstrap Methods

Let ẍ denote x̂ or x̃, and v∗b
g be random variates with mean 0 and

variance 1 (probably Rademacher). Bootstrap scores are generated by

s̈∗b
g = v∗b

g s̈g, g = 1, . . . , G. (18)

Then the bootstrap model is estimated by OLS, yielding

b̈∗b
=

( G

∑
g=1

J̈g

)−1 G

∑
g=1

s̈∗b
g . (19)

The empirical bootstrap score vectors are

ẅ∗b
g = s̈∗b

g − J̈g b̈∗b, g = 1, . . . , G. (20)

The CV1 bootstrap variance matrix is

V̈∗
b =

G(N − 1)
(G − 1)(N − k)

J̈−1
( G

∑
g=1

ẅ∗b
g (ẅ∗b

g )⊤
)

J̈−1. (21)
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g (ẅ∗b

g )⊤
)

J̈−1. (21)

James G. MacKinnon Inference for Logistic Regression Models Vanderbilt University, April 16, 2025 11 / 37



Four WCL Bootstrap Methods

Four WCL Bootstrap Methods
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ẅ∗b
g (ẅ∗b
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Four WCL Bootstrap Methods

When s̈g = s̃g and J̈g = J̃g, we have the WCLR-C bootstrap.

When s̈g = ŝg and J̈g = Ĵg, we have the WCLU-C bootstrap.
These are analogous to the classic WCR-C and WCU-C bootstraps for
linear regression models.
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When s̈g = śg and J̈g = Ĵg, we have the WCLU-S bootstrap.
These are analogous to the WCR-S and WCU-S bootstraps for linear
regression models.

James G. MacKinnon Inference for Logistic Regression Models Vanderbilt University, April 16, 2025 12 / 37



Four WCL Bootstrap Methods

When s̈g = s̃g and J̈g = J̃g, we have the WCLR-C bootstrap.
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When s̈g = ṡg and J̈g = J̃g, we have the WCLR-S bootstrap.
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The Linear Probability Model (LPM)

The Linear Probability Model (LPM)

Instead of linearizing a logit model, we could just estimate the LPM

ygi = Xgiδ + ugi, g = 1, . . . , G, i = 1, . . . , Ng, (23)

where ugi is a disturbance term with rather odd properties, and then
use the classic wild cluster bootstrap or the new -S variants.

For the WCR-C bootstrap, the score vector is

Ng

∑
i=1

(y∗gi − Xgiδ̃)Xgi =

{
∑

Ng
i=1(ygi − Xgiδ̃)Xgi with prob. 1/2,

∑
Ng
i=1(Xgiδ̃ − ygi)Xgi with prob. 1/2.

(24)

This is not very different from the WCLR-C bootstrap score vector

Ng

∑
i=1

(y∗gi − Λ̃gi)Xgi =

{
∑

Ng
i=1(ygi − Λ̃gi)Xgi with prob. 1/2,

∑
Ng
i=1(Λ̃gi − ygi)Xgi with prob. 1/2.

(25)
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Cluster Fixed Effects

Cluster Fixed Effects

Cluster fixed effects create important computational issues. Now

Pr(ygi = 1) = Λ
(

Xgiβ +
G

∑
h=1

δhDh
gi

)
, (26)

where the Dh
gi are cluster fixed-effect dummies. There is no constant

term so there are G + k − 1 parameters to estimate.
When cluster h is omitted, it is impossible to identify δh, because
Dh

gi = 0 for all g ̸= h.

For a linear model, we could first partial out the fixed effects. But,
because (26) is nonlinear, we cannot do that here.
We can rely on a generalized inverse if the logit routine uses one.
We can estimate a different model for each omitted cluster, each
with just k + G − 2 coefficients, in order to obtain the β̂(g).
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Cluster Fixed Effects

With cluster fixed effects, we can estimate slope coefficients and make
inferences about them. But this is insufficient for inference about
predicted probabilities and marginal effects.

For every cluster, the constant term is δg. We cannot estimate it
when we omit cluster g, because it is only identified by the
observations in that cluster.
Without the variance of δ̂g and its covariances with the slope
coefficients, we cannot obtain the standard error of Xgiβ̂ + δ̂g,
which is needed for the standard error of Λ(Xgiβ̂ + δ̂g).

We also need the full variance matrix in order to obtain the standard
errors of the marginal effects.

We could use CV1, but the elements corresponding to the δg will be
severely biased downwards, since each of the fixed-effect dummy
variables is simply a treatment dummy for a single treated cluster.

Further work is needed!
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Confidence Intervals

Confidence Intervals

A conventional confidence interval has the form[
β̂j − c1−α/2 se(β̂j), β̂j + c1−α/2 se(β̂j)

]
, (27)

usually with c1−α/2 a quantile of t(G − 1).

We can instead use bootstrap standard errors in (27). These are

seboot(β̂j) =

(
1

B − 1

B

∑
b=1

(
β̂∗b

j − β̄∗
j
)2)1/2

. (28)

Alternatively, we can use the studentized bootstrap interval[
β̂j − c∗1−α/2 se1(β̂j), β̂j − c∗α/2 se1(β̂j)

]
. (29)

These are both easy to construct using an unrestricted bootstrap DGP.
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Confidence Intervals

It may seem odd to use the CV1 standard error in (29), but it is essential
to use the same standard error as in the WCLU bootstrap itself.

It seems plausible that intervals based on WCLU-S should outperform
ones based on WCLU-C. They do!

In theory, studentized bootstrap intervals should perform better than
ones that use bootstrap standard errors. Not always!

(29) is based on an asymptotically pivotal test statistic, and it
allows the t-statistic to have an asymmetric distribution.
(27) is not based on an asymptotically pivotal quantity, and it
imposes symmetry on the distribution.

Why not invert a bootstrap test based on a restricted bootstrap DGP,
such as the WCLR-S bootstrap?

The logit model has to be estimated many times, with βj equal to
each candidate value for the limits of the interval.
We sometimes encountered numerical problems, making it
infeasible to perform simulation experiments.
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Simulation Design

Simulation Design

There are N = 500G observations, with G often 24 and N = 12,000.

E(ygi) = Λ
(
β1 +

k−1

∑
j=2

βjXgij + βkTgi

)
. (30)

The Xgij are binary random variables which vary at the cluster level.

Tgi is a treatment dummy, which equals 1 for G1 out of G clusters. The
hypothesis under test is βk = 0.

The unconditional expectation of ygi is π, which depends on the
regressors and parameters in (30). We change it by varying β1.

Intra-cluster correlation is determined by a parameter ϕ, which is often
set to 0.10 so that it is moderate.
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Simulation Design

Cluster sizes depend on a parameter γ as in MacKinnon and Webb
(JAE 2017).

The N observations are divided among the G clusters using the
formula

Ng =

⌊
N

exp(γg/G)

∑G
j=1 exp(γj/G)

⌋
, g = 1, . . . , G − 1, (31)

The value of NG is then set to N − ∑G−1
g=1 Ng.

For G = 24, Ng = 500 for all g when γ = 0.

For G = 24, the Ng vary from 163 to 1120 when γ = 2.

For G = 24, the Ng vary from 40 to 1889 when γ = 4.
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Simulation Results

Simulation Results

Figure 1. Rejection frequencies for tests at the .05 level as functions of G
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N = 500G, G1 = G/3, k = 7, γ = 2, ϕ = 0.10, π = 0.31, B = 999
100,000 replications
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Simulation Results

Figure 2. Coverage for 95% confidence intervals as functions of G
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Simulation Results

Figure 3. Rejection frequencies for .05-level tests in an almost ideal case
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Simulation Results

Figure 4. Rejection frequencies for .05-level tests as functions of G1
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Simulation Results

Figure 5. Rejection frequencies for tests at the .05 level as functions of π
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Simulation Results

Figure 6. Rejection frequencies for tests at the .05 level as functions of γ
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Simulation Results

Figure 7. Rejection frequencies for tests at the .05 level as functions of ϕ
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Simulation Results

Figure 8. Rejection frequencies for tests at the .05 level as functions of k
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Simulation Results

Figure 9. Coverage for 95% confidence intervals as functions of βk.
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Conclusions from Simulations

Conclusions from Simulations

Conventional t-tests based on CV1 and t(G − 1) generally
over-reject, often severely. CV3 t-tests perform better.
CV3 t-tests can either under-reject or over-reject, the latter
especially when G1/G is small, π is far from 0.5, or ϕ is high.
Linearized cluster jackknife, or CV3L, standard errors are much
cheaper to compute than CV3 ones, and usually very similar.
The WCLR-S bootstrap often performs well. Problems can arise
when π is extreme or there is a lot of intra-cluster correlation.
All methods can be somewhat unreliable when the binary
outcomes are unbalanced, with most equal to either 0 or 1.

WCLU-S often performs much better than WCLU-C, and WCLR-S
generally performs even better.
Bootstrap standard errors should always be based on the WCLU-S
bootstrap, and these can lead to good confidence intervals.
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Empirical Example 1 – Angrist and Lavy

Empirical Example 1 – Angrist and Lavy

The first example is based on Angrist and Lavy (2009) and concerns
cash incentives for high-school students in Israel. Do they increase the
chance of passing a high-stakes examination? Maybe!

There were 1861 students in 34 schools, of which 16 were treated.
The mean of the dependent variable is 0.287.
There are 10 regressors plus a constant term.
Cluster sizes vary from 12 to 146, and partial leverage varies a lot.
We compute 20 P values. The bootstrap ones with asterisks are
based on t-statistics using bootstrap standard errors.
Most P values are less than 0.05. For the logit model, they vary
between 0.0264 (WCLU-C∗) and 0.0578 (WCLU-S∗).
Bootstrap P values use the Rademacher distribution.
They are based on 9,999,999 bootstrap samples to ensure that the
random number generator plays almost no role.
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Empirical Example 1 – Angrist and Lavy

We also perform placebo regressions. For each of 400,000 replications,
we add one additional regressor to the original model and test the
hypothesis that its coefficient equals 0.

The placebo regressor equals 1 for 16 randomly chosen schools and 0
for the remaining 18 schools.

There are 34C16 = 2,203,961,430 ways to choose the placebo regressor,
so we sample with replacement because it is easier.

Note that we do not omit the original treatment regressor. Doing that
would increase rejection frequencies for the placebo regressions.

Rejection frequencies for placebo regressions with 400,000
replications vary from 0.0364 (WCLU-S∗) to 0.0836 (WCLU-C∗).
Other methods that reject less than 4% of the time are CV3 (0.0373)
and CV3L (0.0387).
Reassuringly, the methods that over-reject most significantly are
the ones that yield the smallest P values for the actual dataset.
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Empirical Example 1 – Angrist and Lavy

Table 1: Effects of Cash Incentives on Passing the Bagrut

Model Method Coef. Std. error t stat. P value Placebo

Logit CV1 0.7164 0.3149 2.2746 0.0296 0.0794
Logit CV2L 0.7164 0.3303 2.1687 0.0374 0.0607
Logit CV3 0.7164 0.3609 1.9850 0.0555 0.0373
Logit CV3L 0.7164 0.3592 1.9941 0.0545 0.0387
Logit WCLR-C 0.7164 2.2746 0.0523 0.0464
Logit WCLR-S 0.7164 2.2746 0.0564 0.0426
Logit WCLU-C 0.7164 2.2746 0.0457 0.0529
Logit WCLU-C∗ 0.7164 0.3095 2.3142 0.0264 0.0846
Logit WCLU-S 0.7164 2.2476 0.0487 0.0476
Logit WCLU-S∗ 0.7164 0.3645 1.9655 0.0578 0.0364

LPM CV1 0.1047 0.0444 2.3572 0.0245 0.0866
LPM CV2 0.1047 0.0466 2.2483 0.0314 0.0681
LPM CV3 0.1047 0.0506 2.0695 0.0464 0.0454
LPM WCR-C 0.1047 2.3572 0.0393 0.0530
LPM WCR-S 0.1047 2.3572 0.0418 0.0497
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Empirical Example 2 – Tuition Fees

Empirical Example 2 – Tuition Fees

The second example concerns university tuition fees in Canada, which
vary by province and year.

Do tuition fees affect the probability of university attendance in
Canada? Probably not! P values vary greatly across methods.

We use Labour Force Survey data for 2009–2019 for males aged 20 and
21 who reside in one of the ten provinces.

We do not report results for females, because even the least reliable
methods provide no evidence that tuition fees matter.

The sample excludes immigrants in Canada for less than 10 years,
because they may pay higher fees.

There are 127,518 observations.
The ten clusters vary in size from 3,402 (P.E.I.) to 37,109 (Ontario).
The mean of the dependent variable is 0.4208.
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Empirical Example 2 – Tuition Fees

There are 4 ordinary regressors plus 20 dummies for year and
province fixed effects.

Bootstrap methods use the six-point distribution of Webb
(CJE,2023) instead of Rademacher, with 9,999,999 replications.
Computing CV3 was far more expensive than anything else. It cost
about 41 times as much as CV3L, and results were almost identical.

Once again, we perform a placebo regression experiment.

We generate artificial tuition series by using an AR(1) model,
simulated separately for each province.

The placebo regressions use 400,000 replications, with B = 999.

As before, we include both the actual tuition series and the simulated
one in the placebo regessions.

The only parameter that seems to matter is the autoregressive
coefficient. Reported results are for the random walk case. With
smaller values, rejection frequencies were a bit higher.
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Empirical Example 2 – Tuition Fees

Placebo rejection frequencies vary between 0.0485 (WCLU-S∗) and
0.1502 (WCU-C∗).

The rejection frequency for WCLR-S is 0.0527; for CV3L, it is
0.0575. These are methods that might be expected to work well.
There is a strong, inverse relationship between the placebo
rejection frequencies and the reported P values.
All the methods with P values less than 0.05 over-reject
approximately 10–15% of the time in the placebo regressions.
Methods that perform reasonably well in the placebo regressions
all yield P values greater than 0.13.

Once again, there seems to be substantial agreement between the
placebo regressions, which use real data, and our simulation
experiments, which do not.
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Empirical Example 2 – Tuition Fees

Table 2: Effects of Tuition Fees on University Attendance

Model Method Coef. Std. error t stat. P value Placebo

Logit CV1 −0.1302 0.0469 −2.7745 0.0216 0.1298
Logit CV3 −0.1302 0.0799 −1.6301 0.1375 0.0574
Logit CV3L −0.1302 0.0800 −1.6280 0.1380 0.0575
Logit WCLR-C −0.1302 −2.7745 0.1399 0.0639
Logit WCLR-S −0.1302 −2.7745 0.1551 0.0527
Logit WCLU-C −0.1302 −2.7745 0.0210 0.0993
Logit WCLU-S −0.1302 −2.7745 0.0912 0.0724
Logit WCLU-C∗ −0.1302 0.0445 −2.9244 0.0169 0.1464
Logit WCLU-S∗ −0.1302 0.0843 −1.5442 0.1569 0.0485

LPM CV1 −0.0296 0.0106 −2.7899 0.0211 0.1332
LPM CV3 −0.0296 0.0184 −1.6120 0.1414 0.0601
LPM WCR-C −0.0296 −2.7899 0.1414 0.0658
LPM WCR-S −0.0296 −2.7899 0.1534 0.0548
LPM WCU-S∗ −0.0296 0.0194 1.5290 0.1606 0.0508
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Conclusions

Conclusions

Conventional t-tests based on CV1 should never be used. They
always over-reject, even more so if based on N(0,1) critical values.
Cluster jackknife, or CV3, t-tests reject less often than CV1 t-tests.
CV3L t-tests usually yield results close to CV3 t-tests and are very
much cheaper to compute.
The best test is often WCLR-S. It frequently outperforms
WCLR-C, but often not by much.
WCLU-S almost always outperforms WCLU-C, often by a lot.
Strange things can happen when the fraction of 1s (or 0s) is small
and/or when there is a lot of intra-cluster correlation.
When CV3, CV3L, WCLR-S, and WCLU-S yield similar results,
they can probably be believed.
Use placebo regressions to see which tests are reliable.
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