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I An Expanded Model of Industry Dynamics with Cross-

Border Shopping

In this section, we discuss an extension of the model in the text in which we include money

as a unit of account, nominal disturbances, and sticky prices. Because our empirical results

imply that net entry responds to real exchange rate fluctuations, we incorporate a role for

entry to play in our model. To do so, we assume that there are two types of retailers, fast-

entry flexible-price retailers and slow-entry sticky price retailers. We call these two types

of retailers “flexible” and “sticky”. As in the baseline model, there is free-entry by flexible

retailers. In contrast, the number of potential sticky retailers is fixed. Sticky retailers have

identical marginal cost structures and fixed costs that increase with the number of operating

sticky retailers. Therefore, the number of sticky retailers operating in each country is also

determined by free-entry.

To model the idea that some retailers are sticky while others are flexible, we consider

the following three-stage game. First, all potential sticky-price retailers make their entry

decisions and choose their nominal prices. Second, nominal shocks and real cost shocks are

realized. Finally, flexible retailers enter and choose their nominal prices, and all consumers

make their purchase decisions.

A Currencies and Consumers

As in the text, consumers in both countries have identical real incomes, ω, in units of the

homogeneous good, which we henceforth refer to as wheat. The law of one price holds for

wheat. There are two currencies, U.S. dollars and Canadian dollars, which are used only

as units of account. The price of one unit of wheat in U.S. dollars is qU , and the price of

the same good in Canadian dollars is qC . Because the law of one price holds for wheat, the

nominal exchange rate is therefore, e = qU/qC . All retailers set prices in units of their home

currencies. Let piU and pjC denote the prices chosen by retailer i in county U and retailer j
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in county C, and let xiU and xjC denote their respective quantities. Consumers preferences

are as in the text, so the output demanded by consumers of retailer iU is

xiU =
(1− λ)SU (γqUω) p

1
ν−1
iU∫

0

NUp
ν/(ν−1)
`U d`

+
λγ (SUqUω + SCeqCω) p

1
ν−1
iU∫

0

NUp
ν/(ν−1)
`U d`+

∫
0

NC (eP`C)ν/(ν−1) d`
,

where qUω and qCω are the nominal incomes of U.S. and Canadian consumers. A similar

equation characterizes the demand for a typical Canadian retailer.

B Technology

All flexible retailers in each county share the same technology. In U , the fixed cost and

marginal cost are FfU and cfU , both denominated in U.S. dollars. We denote their real

counterparts with φfU = FfU/qU and κfU = cfU/qU . In Canada, these nominal and real

quantities are denoted FfC , cfC , φfC , and κfC . The flexible-firm technology is widely available

in both countries. In contrast, there is a limited supply of sticky retailers. If NsU sticky

retailers enter in U , then the sticky retailers’ nominal fixed cost is FsU (NsU/SU)θ, where

θ > 0. All sticky retailers in U share the same nominal marginal cost, csU . The real

counterparts to these costs are φsU (NsU/SU)θ and κsU . Again, the analogous Canadian

quantities are denoted with the “C” subscript. Let NfU and NfC denote the number of

flexible retailers in U and C, so that

NU = NfU +NsU ,

NC = NfC +NsC .

C Shocks

To incorporate aggregate uncertainty we assume that csU , cfU , qU , csC , cfC , and qC , are

random variables, that flexible retailers make their entry decisions and choose their prices
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after their realizations, and that sticky retailers make their entry decisions and choose their

prices before their realizations. We call a change in either qU or qC that leaves retailers’ real

marginal costs unchanged a nominal disturbance. To simplify the analysis, we assume that
cfU
csU

= cfC
csC

= τ > 1 always. This assumption implies that nominal disturbances do not alter

the real (variable) cost benefits of being a sticky firm.

D Entry and Price Setting by Flexible Retailers

It is straightforward to show that flexible retailers’ profit maximizing pricing decisions follow

the familiar inverse-elasticity rule, as in the text. Therefore, we have the price choices of all

flexible retailers within each county are identical and equal to

pfU = cfU/ν,

pfC = cfC/ν.

The free-entry condition for flexible retalers in U is therefore

(1− λ)SU (γqUω)∫
0

NUp
ν/(ν−1)
`U d`

+
λγ (SUqUω + SCeqCω)∫

0

NUp
ν/(ν−1)
`U d`+

∫
0

NU (`P`C)ν/(ν−1) d`
(1)

=
φfU

(1− ν)
( cfU

ν

) ν
1−ν

A similar free-entry condition hols for flexible retailers in C.

E Price Setting by Sticky Retailers

A sticky retailer must choose its nominal price before the realizations of any shocks. The

profit-maximization problem of a sticky retailer in U is

E [πsU ] = max
psU

E


(1− λ)SU (γqUω) p

1
ν−1
sU∫

0

NUp
ν/(ν−1)
`U d`

+ +
λγ (SUqUω + SCeqCω) p

1
ν−1
sU∫

0

NUp
ν/(ν−1)
`U d`+

∫
0

NC (ep`C)ν/(ν−1) d`

 (psU − csU)



− φsU
(
NsU

SU

)θ
,

(2)
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where the expectation is taken over the exogenous random variables csU , qC , qU , as well as

the endogenous variables NU , NC , pfU and pfC . The prices of Canadian sticky retailers, psC ,

and the fixed cost (and therefore the number of sticky retailers) are presumed to be known

when choosing psU . The presence of flexible retailers considerably simplifies this problem,

because the free-entry condition (1) must hold for every realization of the exogenous random

variables. Substitution of (1) into (2) within the expectations operator yields

E [πsU ] = max
psU

E
[
φfU

1− ν

(cfU
ν

) ν
1−ν

p
1

ν−1
sU (psU − csU)

]
− φsU

(
NsU

SU

)θ
.

Imposing the assumption that cfU/csU = τ always, we can easily show that

psU =
E [csU ]
ν

 E
[
c

1
1−ν
sU

]
E [csU ] E

[
c
ν/1−ν
sU

]
 .(3)

A similar expression holds for psC . The first term on the right-hand side of (3) is the optimal

price choice in sticky-price models with no entry by flexible producers. To better understand

the term in brackets, note that the Cauchy-Schwartz inequality implies that for any constant

ζ such that E
[
(ζcsU)

1
1−ν

]
> 1, then

E
[
(ζcsU)

1
1−ν

]
= E

[
ζcsU (ζcsU)ν/(1−ν)

]
≤ E (ζcsU)

1
2 E
[
(ζcsU)

ν
1−ν

] 1
2

We can square the right hand side and divide the result by ζ1/(1−ν). to get

E
[
c

1
1−ν
sU

]
< E [csU ] E

[
c
ν/1−ν
sU

]
.

While unessential for our main point, this says that sticky retailers lower their markups

below what they would be if there were no entry by flexible retailers. That is, they drop their

preset price so that they do not lose sales during contractions to flexible producers. Also,

the presence or absence of cross-border shoppers has no impact on sticky retailers’ pricing

decisions. This will not generally be the case without the presence of flexible retailers.
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F Free Entry by Sticky Retailers

To determine the number of sticky retailers in each county, we impose the free-entry condition

that the profits of the marginal entrant in each county equals zero. The simplification of

a sticky retailer’s profit maximization problem using flexible retailers’ free-entry condition

aids in this enterprise as well. If we calculate a sticky retailer’s expected profits and choose

the number of such retailers in each county to set profits equal to zero, we get

NsU = SU

(
φfU
φsU

) 1
θ

[
τ ν/(1−ν)E

[
c

1
1−ν
sU

] ν
ν−1

E
[
c

ν
1−ν
sU

] 1
1−ν

] 1
θ

.

A similar expression holds for NsC . By assumption, NsU and NsC do not depend on any of

the shocks we consider.

G Free Entry by Flexible Retailers

We can now turn to the determination of NfU and NfC . The two free-entry conditions that

these must simultaneously satisfy are

φfU
(1− ν)

(cfU
ν

) ν
1−ν

=
(1− λ) γωSU

NsUp
ν/(ν−1)
sU +NfUp

ν/(ν−1)
fU

(4)

+
λγω (SU + SC)

NsUp
ν/(ν−1)
sU +NfUp

ν/(ν−1)
fU +NsC (epsC)ν/ν−1 +NfC (epfC)ν/(ν−1)

φfC
(1− ν)

(cfC
ν

) ν
1−ν

=
(1− λ) γωSC

NsCp
ν/(ν−1)
sC +NfCp

ν/(ν−1)
fC

(5)

+
λγω (SU + SC)

NsU (e−1psU)ν/ν−1 +NfU (e−1pfU)ν/(ν−1) NsCp
ν/(ν−1)
sC +NfCp

ν/(ν−1)
fC

G.1 The Solution at Parity

In general, these equations do not admit a closed-form solution. However, they do admit

such a solution in the case of “parity”, when φfC = φfU and cfC/qC = cfU/qU . In this case,
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we can divide the second equation by e
ν
ν−1 , subtract (5) from (4) and rearrange to get

NsC (ePsC)ν/(ν−1) +NfC (ePfC)ν/(ν−1) =
SC
SU

(
NsUP

ν/(ν−1)
sU +NfUP

ν/(ν−1)
fU

)
Substituting this into (4) yields

(1− λ) γωSU
NsUP

ν/(ν−1)
sU +NfUP

ν/(ν−1)
fU

+
SU

(
1 + sC

SU

)
(

1 + SC
SU

)(
NsUP

ν/(ν−1)
sU +NfUP

ν/(ν−1)
fU

)
=

φfU
(1− ν)

(cfU
ν

) ν
1−ν

Which obviously simplifies to

γωSU

NsUP
ν/(ν−1)
sU +NfUP

ν/(ν−1)
fU

=
φfU

(1− ν)

(cfU
ν

)ν/(1−ν)
,

the same free entry condition as in the model without cross-border shopping. The analogous

derivation holds for the Canadian side of the border as well. Therefore,

NfU = SU

γω (1− ν)
φfU

−
(cfU
ν

)ν/(1−ν)
[
τ
ν/(1−ν)
U E

[
c

1
1−ν
sU

] ν
ν−1

E
[
c

ν
1−ν
sU

] 1
1−ν

] 1
θ



×

E [csU ]
ν

 E
[
c

1
1−ν
sU

]
E [csU ] E

[
c

ν
1−ν
sU

]

ν/(ν−1)

in the case of parity. An analogous expression also holds for NfC . We denote these parity

solutions with N fU and N fC , and we presume that the parameter values are such that N fU

and N fC are both strictly positive.

G.2 The Log-Linear Solution for the General Case

We wish to consider the industry’s responses to nominal and real shocks. To do so, we take

a log-linear approximation of the two free-entry conditions for flexible retailers around their

solution at parity. We assume that κfU = κfC , κsU = κsC , and that the distributions of csU

and csC are identical up to scale so that sticky retailers make identical price choices and
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NfU
NfC

= NsU
NsC

= SU
SC

and Nfa
NsU

= NfC
NsC

= ψ at parity. To simplify the free-entry conditions, we

define

dC = psC/pfC ,

dU = psU/pfU ,

r =
e−1pfU
pfC

.

That is, dC and dU are the discounts offered by sticky retailers (relative to their domestic

flexible counterparts) in C and U , while r is the real exchange rate formed using flexible

retailers’ prices. Under the model’s assumptions, only nominal disturbances impact dC and

dU , while only real disturbances that change flexible retailers’ marginal costs impact r.

With these definitions in hand, we can manipulate the free-entry conditions (4) and (5)

to get

φfU
1− ν

=
SU
NfU

 (1− λ) γω
NsU
NfU

d
ν/(ν−1)
U + 1

+
λγω (1 + SC/SU)

NsU
NfU

d
ν/(ν−1)
U + 1 + NsC

NfU
(dC/r)

ν/(ν−1) + NfC
NfU

rν/(ν−1)


φfC

1− ν
=

SC
NfC

 (1− λ) γω
NsC
NfC

d
ν/(ν−1)
C + 1

+
λγω (1 + SU/SC)

NsU
NfC

(dU)ν/(ν−1) + NfU
NfC

rν/(ν−1) + NsC
NfC

d
ν/(ν−1)
C + 1


The log-linear approximation to these equations around the point of parity is

η ·

 ln
(
NfU/N fU

)
ln
(
NfC/N fC

)
+ δ


ln r

ln (dU/d)

ln (dC/d)

 = 0,

where d is the common point where we evaluate dU and dC . The elements of η are

η11 =
1

1 + ψdν/(ν−1)

(
−1 + λ

SC
SU + SC

)
,

η12 =
1

1 + ψdν/(ν−1)

−λSC
SU + SC

,

η21 =
1

1 + ψdν/(ν−1)

λSU
SC + SU

,

η22 =
1

1 + ψdν/(ν−1)

(
−1 +

λSU
SU + SC

)
;
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and the elements of δ are

δ11 =
1

1 + ψdν/(ν−1)

(
−λ SC

SU + SC
· ν

1− ν

)
,

δ21 =
1

1 + ψdν/(ν−1)

(
λSU

SU + SC
· ν

1− ν

)
,

δ12 =
ψdν/(ν−1)

1 + ψdν/(ν−1) ·
ν

1− ν

(
1− λSC

SU + SC

)
,

δ22 =
ψdν/(ν−1)

1 + ψdν/(ν−1) ·
ν

1− ν
λSC

SU + SC
,

δ31 =
ψdν/(ν−1)

1 + ψdν/(ν−1) ·
ν

1− ν
λSC

SU + SC
,

δ32 =
ψdν/(ν−1)

1 + ψdν/(ν−1) ·
ν

1− ν

(
1− λSU

SU + SC

)
.

If we multiply both η and δ by 1 + ψdν/(ν−1) we get ln
(
NfU/N fU

)
ln
(
NfC/N fC

)
 =

 −1+λSC
SU+SC

−λSC
SU+SC

−λSU
SU+SC

−1+λSU
SU+SC


−1

× ν

1− ν

 −λSC
SU+SC

ψdν/(ν−1)
(
−1+λSC
SU+SC

)
λSC

SU+SC
ψdν/(ν−1)

λSU
SU+SC

λSU
SU+SC

ψdν/(ν−1) ψdν/(ν−1)
(

1− λSU
SU+SC

)


×


ln r

ln (dU/d)

ln (dC/d)


The matrix inverse is −1+λSC

SU+SC
−λSC
SU+SC

−λSU
SU+SC

−1+λSU
SU+SC


−1

=
1

1− λ

 −1 + λSU
SU+SC

λSC
SU+SC

λSU
SC+SC

−1 + λSC
SU+SC


Plugging this in and solving, we get that

 ln
(
NfU/N fU

)
ln
(
NfC/NfC

)
 =

ν

1− ν

 λ
1−λ

SC
SU+SC

−ψdν(ν−1) 0

λ
1−λ

SC
SU+SC

0 −ψdν(ν−1)

×


ln r

ln (dU/d)

ln (dC/d)

(6)

Equation (6) is the log-linear solution to the model.
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H Discussion of the Solution

There are three features of this solution worth noting. First, real disturbances that change

r impact NfU and NfC in exactly the same way as they do in the simpler model in the text.

Because NsU and NsC do not respond to r by construction, we can use this result to show

that

∂ lnNU

∂ ln r
=

N fU

NsU +N fU

ν

1− ν
λ

1− λ
SC

SU + SC
.(7)

Under the assumptions made in the text, each retailer’s payroll is a constant fraction of its

marginal cost. A real disturbance that changes r leaves the average payroll of both flexible

and sticky retailers unchanged. However, it can impact overall average payroll by changing

the composition of establishments between these two groups. If we let WfU and WsU denote

the average payrolls of flexible and sticky retailers, then we get that

∂ lnWU

∂ ln r
=
(

WfUN fU

WsUNsU +WfUN fU

− N fU

NsU +N fU

)
ν

1− ν
λ

1− λ
SC

SU + SC
(8)

Equations (7) and (8) imply that the empirical model’s specification of the sensitivity mea-

sure with respect to real exchange-rate fluctuations driven by real shocks is correct in this

more complicated environment.

The second important feature of (6) is that the impact of nominal disturbances that erode

or inflate sticky retailers’ preset nominal prices in U (and so change dU) does not depend

on the presence or absence of cross-border shopping. Because such nominal disturbances

can be expected to impact both border and interior counties, their effects will then be

absorbed into the coefficients on the time-dummies in our empirical model. Third and last,

Canadian nominal disturbances that change dC have no impact on NfU . Together, these two

features of the solution imply that purely nominal disturbances that change the real prices

of sticky retailers have no particular impact on border communities retail trade industries

in the presence of flexible retailers whose entry and pricing decisions can respond to these

shocks. Therefore, such a framework is not capable of reconciling our empirical results with

an important role for retail-level price stickiness.
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II Data Imputation Procedure

This section describes our procedure for replacing payroll data for retail trade industries in

the County Business Patterns data set that has been withheld by the Census to preserve

confidentiality. The basic idea is to use the information that we do have on establishment

counts by size class at the county level and total payroll at the state level to estimate the

relationship between the number of establishments and total payroll among those counties

where the data has been withheld. Fitted values from this estimated regression then serve

as estimates of the withheld payroll data.

To begin with, focus on a particular retail trade industry during a particular year. Let

W s
c denote the total payroll in that industry in county c of state s, and let W s denote the

statewide payroll in that industry for state s. If C (s) is the set of all counties in state s,

then

W s =
∑
c∈C(s)

W s
c .

We assume that observations of W s are available for every state. Because the number of

retail establishments in a given state is usually large, data suppression is typically not a

problem at the state level in this data set. On the other hand, suppression of observations

of W s
c for individual counties is common. What is always reported for each county is the

number of establishments belonging to several predetermined size classes (based on mid-

March employment). Let J denote the set of such size classes and N s
c (j) denote the number

of establishments in class j in county c of state s. The data replacement procedure is based

on a regression model of W s
c on N s

c (j) restricted to those counties where the census has

withheld publication of W s
c . Let Ws denote the set of all counties in state s for which the

Census has withheld publication of W s
c . Then the basic regression model is

W s
c =

∑
j∈J

βjN
s
c (j) + usc(9)

E [usc] = 0
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for all c ∈Ws. The coefficients βj are constant across both counties and states. That is, the

regression equation specifies that the total payroll in a county equals a linear function of the

number of establishments in each size class plus a mean zero error term.

The obvious impediment to estimating the equation is that the dependent variable is

withheld for all of the observations of interest. To overcome this, we can aggregate the

equation to the state level, where the aggregated dependent variable is observable. To do so,

define W̃ s as the payroll in all counties in state s for which payroll data is withheld. This

can be constructed as statewide payroll minus payroll at all counties at which payroll was

reported. That is

W̃ s = W s −
∑
c∈Ws

W s
c ,

where W
s

is the complement of Ws. If we then define

Ñ s (j) =
∑
c=Ws

N s
c (j)

then aggregating (9) for state s yields

W̃ s =
∑
j∈J

βjÑ
s (j) + ũs,(10)

where

ũs =
∑
c=W s

usc.

If we calculate the dependent variables and regressors for (10) for each state, then the

coefficients βj can be estimated by applying the regression to the state level data. The fitted

values of this estimated model can then be used to construct estimates of the withheld county-

level payroll data. When implementing this procedure, we construct separate estimates of

βj for each year and industry in our sample.
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III GMM Estimation

In this section, we consider the GMM estimation procedure described in the text in more

detail. Several aspects of the paper’s empirical model generalize quite readily. Here we

consider the appropriately generalized version with m dependent variables, an autoregressive

order of p, and k current and lagged values of the real exchange rate. The resulting estimating

equation is

yit
(m×1)

= αi
(m×1)

+ µt
(m×1)

+
p∑
l=1

Λl
(m×m)

yit−l
(m×1)

+ β′

(m×k)

(
si × et

(k×1)

)
+ εit

(m×1)
.(11)

The dimensions of all vectors and matrices appear below them. The vector yit contains the

period t values of the m variables describing a particular retail trade industry in county i. In

the baseline model, m equals 2 and these variables are the logarithms of total establishments

and their average payroll. The vector αi is the county specific intercept term, and the vector

µt is an aggregate disturbance that impacts all counties’ industries in period t. The matrices

Λl contain the model’s autoregressive coefficients. The scalar si is the index of county i’s

sensitivity to real exchange rates described in the text, and the vector et contains the k

current and lagged realizations of the real exchange rate. For most counties in our sample,

si = 0. Finally, the matrix β contains the elasticities of yit with respect to a change in et for

a county with si equal to one, and εit is a disturbance vector.

We observe a balanced panel of the variables in yit for T periods and N counties. Equation

(11) only describes the evolution of yit for t between p and T . The initial p realizations of yit

will play a key role in estimation of the unknown parameters in (11). We make the following

assumptions on the model’s error terms and parameters.

1. The roots of |I −
∑p

l=1 ΛlL
p| all lie strictly outside of the unit circle.

2. Pr [si = 0] > 0.

3. The individual specific intercept αi and the error terms εit, t = p + 1, . . . , T are

independently distributed across individuals and
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(a) E [αi|si = 0] = 0,

(b) E [εit] = 0, t = p+ 1, . . . , T,

(c) E [εitε′iτ |si = 0] = 0, if t 6= τ ,

(d) E [αiε′it] = 0, t = p+ 1, . . . , T,

(e) E [siεit] = 0, t = p+ 1, . . . , T,

(f) E [αiα′i] <∞

(g) E [εitε′it] <∞, t = p+ 1, . . . , T.

4. If si = 0, then the first p values of yit satisfy

yit = µt +

(
I −

p∑
l=1

Λl

)−1

αi + uit, t = 1, . . . , p,(12)

where

(a) E [uit] = 0, t = 1, . . . , p,

(b) E [αiu′it] = 0, t = 1, . . . , p,

(c) E [siuit] = 0, t = 1, . . . , p,

(d) E [uiτε′it] = 0, for all τ = 1, . . . , p and t = p+ 1, . . . , T,

(e) E [uitu′iτ ] <∞ for all τ = 1, . . . , p and t = 1, . . . , p.

5. The regressors ep+1, ep+2, . . . , eT are known constants.

Assumption 1 implies that the autoregressive system in (11) is stable, and Assumption 2

asserts that cross-border shopping does not impact a positive fraction of our sample counties.

This is clearly the case in our sample. Given the presence of the time effects in (11), 3(a) and

3(b) are normalizations. Assumption 3(c) restricts the error term in (11) to be uncorrelated

through time. Assumptions 3(d) and 3(e) assert that εit cannot be forecasted using a linear

function of αi and si. In the case where si = 0, Assumptions 4(a) and 4(b) assert that the
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deviations of yi1 through yip from their unconditional means are uncorrelated with those

means. Assumption 4(d) asserts that εt cannot be forecasted using linear functions of uiτ .

Notice that assumptions 3(d) and 4(b) do not restrict the higher moments of εit or uit from

being dependent on αi, so the model allows for general forms of heteroskedasticity. Also note

that we do not constrain the covariance between αi and si to equal zero. The remaining

assumptions are regularity conditions that guarantee existence of second moments for yit.

A Moment Conditions

To estimate the unknown parameters in (11), we derive moment conditions which are func-

tions of the observed data that are satisfied only at the true parameter values. We then

use these moment conditions in a GMM estimation procedure to produce consistent param-

eter estimates. Our derivation of the moment conditions closely follows Blundell and Bond

(1998). The differences between our derivation and theirs is minor, and only allow for the

inclusion of the independent variables siet and a vector (as opposed to univariate) autore-

gression. Our distributional theory for the estimator is the same as Blundell and Bond’s,

letting N go to infinity while T is held fixed.

If si = 0, we can use (11) and (12) to write that

yip+1 = α̃i + µp+1 +
p∑
l=1

Λl (α̃i + uip+1−l) + εip+1−l.

In general, for t ≥ p+ 1, we get

yit = α̃i +
t−p−1∑
j=0

ψjεit−j +
t−1∑
j=t−p

ψjuit−j +
t−1∑
j=0

ψjµt−j,(13)

where ψj is defined recursively with

ψ0 = Im

ψj = 0, ∀j < 0

ψj =
p∑
l=1

Λlψj−l, ∀j > 0.
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Equation (13) and assumptions 3(c) and 4(d) imply that

E
[
I {si = 0}∆εit · y′it−τ

]
= 0, ∀t ≥ p+ 2, 2 ≤ τ ≤ t− 1,(14)

where I {si = 0} is an indicator function that equals one if and only if si = 0. Furthermore,

(13) and assumptions 3(a), 3(b), 3(c), 3(d), 4(a), 4(b), and 4(d) imply that

E
[
I {si = 0} × (αi + εit) ·∆y′it−τ

]
= 0, ∀t ≥ p+ 1, τ ≥ 1(15)

Note that many of the additional moment conditions implied by (15) are redundant. If

we define t̃ (t) = max {t+ 1, p+ 1} and we choose a t? > t̃ (t), then we can write that

E [I {si = 0} × (αi + εit?) ·∆y′it] = E

I {si = 0}

αi + εiet(t) +
t?∑

τ=et(t)+1

∆εiτ

 ·∆y′it


= E
[
I {si = 0}

(
αi + εiet(t)) ·∆y′it]

+
t?∑

τ=et(t)+1

E [I {si = 0}∆εiτ · y′it]−
t?∑

τ=et(t)+1

E
[
I {si = 0}∆εiτ · y′it−1

]
.

Therefore, imposing

E
[
I {si = 0}

(
αi + εiet(t)) ·∆y′it] = 0, t = 2, . . . , T − 1(16)

and (14) suffices to impose the entire set of moment conditions implied by (14) and (15).

Finally, 3(a) and 3(b) imply that

E [I {si = 0} (αi + εit)] = 0,(17)

and 3(e) implies that

E [∆εit · si] = 0, ∀t ≥ p+ 2.(18)

Our full set of moment conditions used for parameter estimation is given by (14), (16),

(17), and (18).
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B Parameter Estimation

Let

γ =
(

vec (Λ′1)′ , vec (Λ′2)′ , . . . , vec
(
Λ′p
)′
, vec (β′)′ , µ′p+1, µ

′

p+2, . . . , µ
′
T

)′
denote the vector of parameters of interest, and define

uit (γ) = yit − µt +
p∑
l=1

Λlyit−l + β′ (si × et) ,

for t ≥ p + 1. Let γ0 denote the true parameter values. Then the moment conditions (14),

(16), (17), and (18) can be rewritten as

E
[
{si = 0}∆uit (γ0) · y′it−τ

]
= 0, t = p+ 2, . . . , T, 2 ≤ τ ≤ t− 1

E
[
I {si = 0} × uiet(t) (γ0) ·∆y′it

]
= 0, t = 2, . . . , T − 1.

E [I {si = 0}uit (γ0)] = 0, t = p+ 1, . . . , T

E [∆uit · si] = 0, t = p+ 2, . . . , T.

To express these moment conditions in matrix form for a given individual, define the

error vector ui (γ) to be

ui (γ) =



∆uip+2 (γ)

∆uip+3 (γ)
...

∆uiT (γ)

uip+1 (γ)

uip+2 (γ)
...

uiT (γ)



,
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and define the instrument vector zi to be

zi =



I {si = 0}

si

I {si = 0} · yi1

I {si = 0} · yi2
...

I {si = 0} · yiT−2

I {si = 0} ·∆yi2

I {si = 0} ·∆yi3
...

I {si = 0} ·∆yiT−1



.

Finally, define the moment selector matrix C to be a sparse matrix with row dimension equal

to the number of valid moment conditions and a single element in the j’th column equal to

one if

E
[
(zi ⊗ ui (γ0))j

]
= 0

where the subscript j refers to the j’th element of that vector.

Let AN be a square, positive definite matrix that has dimensionality equal to the row

dimension of C. This matrix may be data dependent. Define the sample moment function

gN (γ) as

gN (γ) = C · 1
N

N∑
i=1

zi ⊗ ui (γ) .

Then the GMM estimator is the value of γ that minimizes

JN (γ) = gN (γ)′ · AN · gN (γ) .

To characterize the solution to this minimization problem, we can apply the rule for

differentiating a quadratic form to get the first-order necessary condition which the GMM
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estimator, γ̂N , must satisfy

∂JN (γ̂N)
∂γ′

= 2gN (γ̂N)′AN
∂gN (γ̂N)
∂γ′

= 0.

To find a closed-form solution for γ̂N , it is helpful to define

Yi =



∆yip+2

∆yip+3

...

∆yiT

yip+1

yip+2

...

yiT



,
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and

Xi =



Im ⊗∆y′ip+1 Im ⊗∆y′ip · · · Im ⊗∆y′i2 Im ⊗ si∆e′p+2

Im ⊗∆y′ip+2 Im ⊗∆y′ip+1 · · · Im ⊗∆y′i3 Im ⊗ si∆e′p+3

...
... . . . ...

...

Im ⊗∆y′iT−1 Im ⊗∆y′iT−2 · · · Im ⊗∆y′iT−p Im ⊗ si∆e′T

Im ⊗ y′ip Im ⊗ y′ip−1 · · · Im ⊗ y′i1 Im ⊗ sie′p+1

Im ⊗ y′ip+1 Im ⊗ y′ip · · · Im ⊗ y′i2 Im ⊗ sie′p+2

...
... . . . ...

...

Im ⊗ y′iT−1 Im ⊗ y′iT−2 · · · Im ⊗ y′iT−p Im ⊗ sie′T

−Im Im 0 · · · 0 0

0 −Im Im · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · −Im Im

Im 0 0 · · · 0 0

0 Im 0 · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · 0 Im



.

Then we can write that

ui (γ) = Yi −Xiγ,

and that

C (zi ⊗ ui (γ)) = C (zi ⊗ (Yi −Xiγ))

= C (zi ⊗ Yi)− C (zi ⊗Xiγ)

= C (zi ⊗ Yi)− C (zi ⊗Xi) γ.

This final equality follows from the fact that zi is a single column vector.
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Using this expression, we can rewrite gN (γ) and its derivative as

gN (γ) = C · 1
N

(
N∑
i=1

zi ⊗ Yi −
N∑
i=1

zi ⊗Xiγ

)
∂gN (γ)
∂γ′

= −C · 1
N

N∑
i=1

zi ⊗Xi.

Using these expressions, we can write the first-order condition for minimization of the GMM

criterion function as

2

(
C ·

N∑
i=1

zi ⊗ Yi −

(
C ·

N∑
i=1

zi ⊗Xi

)
γ̂N

)′
AN

(
C ·

N∑
i=1

zi ⊗Xi

)
.

Rearrainging this yields

γ̂′N

(
C ·

N∑
i=1

zi ⊗Xi

)′
AN

(
C ·

N∑
i=1

zi ⊗Xi

)
=

(
C ·

N∑
i=1

zi ⊗ Yi

)′
AN

(
C ·

N∑
i=1

zi ⊗Xi

)
.

So the final expression for the GMM estimator is

γ̂N =

[(
C ·

N∑
i=1

zi ⊗Xi

)′
AN

(
C ·

N∑
i=1

zi ⊗Xi

)]−1(
C ·

N∑
i=1

zi ⊗Xi

)′
AN

(
C ·

N∑
i=1

zi ⊗ Yi

)

B.1 The Large-Sample Distribution of γ̂N

To characterize the distribution of the γ̂N , we apply standard asymptotic distributional argu-

ments, letting N go to infinity while holding T fixed. Towards this end, it is straightforward

to show that

γ̂N − γ0 =

[(
C ·

N∑
i=1

zi ⊗Xi

)′
AN

(
C ·

N∑
i=1

zi ⊗Xi

)]−1(
C ·

N∑
i=1

zi ⊗Xi

)′
AN

(
C ·

N∑
i=1

zi ⊗ ui (γ0)

)
.

Using this, we can apply standard cross-sectional asymptotic theory to show that

plim
N→∞

γ̂N = γ0,

and that

√
N (γ̂N − γ0) d→ N (0, V ) ,
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where

V = D′−1SD−1,

D = plim
N→∞

1
N2

(
C ·

N∑
i=1

zi ⊗Xi

)′
AN

(
C ·

N∑
i=1

zi ⊗Xi

)
,

S = plim
N→∞

1
N3

(
C ·

N∑
i=1

zi ⊗Xi

)′
AN ·

(
N∑
i=1

C (zi ⊗ ui (γ0)) (zi ⊗ ui (γ0))′C ′
)
· AN

(
C ·

N∑
i=1

zi ⊗Xi

)
.

For a given sequence of weighing matrices, D and S can be consistently estimated using

their sample analogues.

B.2 The Weighing Matrix

We rely on one-step GMM estimators, calculated using the weighing matrix.

AN =

(
1
N

N∑
i=1

C (ziz′i ⊗ Σ)C ′
)
,

where

Σ
m·(2·(T−p)−1)×m·(2·(T−p)−1)

=

 A
m·(T−p−1)×m·(T−p−1)

0
m·(T−p−1)×m·(T−p)

0
m·(T−p)×m·(T−p−1)

I
m·(T−p)×m·(T−p)


where

A =



2Im −Im 0 0 · · · 0

−Im 2Im −Im 0 · · · 0

0 −Im 2Im −Im · · · 0

0 0 −Im 2Im · · · 0
...

...
...

... . . . ...

0 0 0 0 · · · 2Im


.

This weighing matrix is the multivariate extension of the initial weighing matrix used by

Blundell and Bond (1998).
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