Liquidity and Crises in Financial Markets

OTC Markets III

U of Basel, HS 2012

Market Freeze during the Crisis

Three stories:

- 1. liquidity hoarding and runs on liquidity
- 2. contagion across markets
- 3. adverse selection

Why were OTC markets affected?

Was the gov't response appropriate?

Liquidity Shock

Weill (2010) – no ability or not optimal

- borrowing constraints for MM
- temporary liquidity support is appropriate
- it might not be optimal to have "market continuity"

Lagos, et al. (2010) – no incentive

- temporary shock with random recovery
- MM reluctant to amass large positions that are hard to unwind
- search frictions and bargaining compound problem

Adverse Selection

OTC markets are fragile due to

- opaqueness of assets
- bilateral bargaining
- search frictions

Both, sunspots and fundamental shocks matter.

It can be socially optimal for a "Market-maker-of-last-resort" to intervene.

This involves losses if market freezes due to fundamental reasons.

S (indivisable) assets:

- "good" assets: fraction π yields flow δ
- "lemons": fraction 1π yields flow 0
- asset type is private information of the holder

Continuum of anonymous investors:

- ullet risk-neutral and discount future at rate r
- start with high valuation at δ (buyers)
- later switches to lower valuation δx (sellers)
- Poisson Process w. arrival rate $\kappa > 0$

Trading:

- \bullet random, bilateral matching: Poisson Process w. rate λ
- buyers make take-it-or-leave-it offers

"Life-cycle"

Trading Dynamics

Market Freeze

Pooling contract given by $(p(t), \gamma(t))$ dominates separating contract.

p(t) – price at which an asset is traded

 $\gamma(t)$ – probability that an asset is traded (conditional on a trade meeting)

$$\dot{\mu}_o(t) = -\dot{\mu}_s(t) = \kappa \mu_o(t) + \gamma(t)\lambda \mu_b(t)\mu_s(t)$$

$$\dot{\mu}_\ell(t) = -\gamma(t)\lambda \mu_b(t)\mu_\ell(t) + \gamma(t)\lambda \mu_b(t)\mu_\ell(t) = 0$$

$$\dot{\mu}_b(t) = 0$$

Market Freeze

$$rv_{o}(t) = \delta + \kappa(v_{s}(t) - v_{o}(t)) + \dot{v}_{o}(t)$$

$$rv_{s}(t) = \delta - x + \gamma(t)\lambda\mu_{b}(t)\max\{p(t) + v_{b}(t) - v_{s}(t), 0\} + \dot{v}_{s}(t)$$

$$rv_{\ell}(t) = \gamma(t)\lambda\mu_{b}(t)\max\{p(t) + v_{b}(t) - v_{\ell}(t), 0\} + \dot{v}_{\ell}(t)$$

$$rv_{b}(t) = \max_{\gamma(t)}\lambda\gamma(t)(\mu_{s}(t) + \mu_{\ell}(t)) \cdot \max\{\max_{p}\tilde{\pi}(p)v_{o} + (1 - \tilde{\pi}(p) - p(t) - v_{b}(t), 0\} + \dot{v}_{b}(t)$$

Bargaining

Buyer makes a take-it-or-leave-it offer.

Average quality of the asset purchased is given by

$$\tilde{\pi}(t) = \begin{cases} \frac{\mu_s(t)}{\mu_s(t) + \mu_\ell(t)} & \text{if } p(t) \ge v_s(t) - v_b(t) \\ 0 & \text{if } p(t) < v_s(t) - v_b(t). \end{cases}$$

Why? Pooling implies that a lemon always accepts an offer that a seller accepts.

If price is too low, only lemon will accept the offer.

But then it's not worth for the buyer to make an offer.

This implies in steady state:

Market Freeze

$$v_s = \frac{\delta - x}{r}$$

$$v_o = \frac{1}{r + \kappa} (\delta + \kappa v_s)$$

$$v_{\ell}(t) = \frac{\lambda \gamma(t)}{\lambda \gamma(t) + r} v_s + \dot{v}_{\ell}(t)$$

Trading Dynamics

Hence: The value of a lemon is time-dependent.

Dynamics are then driven by $v_{\ell}(t)$ and $\tilde{\pi}(t)$.

Decision to Buy an Asset

1. Buyers need to offer $p \geq v_s - v_b$ to induce a seller to sell taking into account the average quality of assets $\tilde{\pi}$ (pooling).

Trading Dynamics

2. Buyer will make an offer if and only if surplus from trade is positive.

$$\Gamma(t) \quad \equiv \quad \underbrace{\tilde{\pi}(t)v_o + (1 - \tilde{\pi}(t))v_\ell(t)}_{\text{expected value of the asset}} - \underbrace{v_s}_{p(t) + v_b(t)} \geq 0$$

3. Buyer decides on the probability of trading at time t:

$$\gamma(t) = \begin{cases} 0 & \text{if } \Gamma(t) < 0\\ \in [0, 1] & \text{if } \Gamma(t) = 0\\ 1 & \text{if } \Gamma(t) > 0. \end{cases}$$

Equilibrium

We have to determine two functions:

- trading strategy, $\gamma(t): \mathbb{R} \to [0, 1]$
- average quality of assets for sale, $\tilde{\pi}(t) : \mathbb{R} \to [0, 1]$

The trading strategy must be a subgame-perfect Nash equilibrium: It is optimal given $\tilde{\pi}(t)$ and the future decisions $\gamma(\tau)$ for all $\tau > t$.

Trading Dynamics

How the quality evolves over time is driven by $\gamma(t)$ and the law of motion for μ_s and μ_ℓ .

Quality vs. Resale Effect

$$\frac{\Gamma}{(1-\tilde{\pi}(t))v_s} = \underbrace{\frac{\tilde{\pi}(t)}{1-\tilde{\pi}(t)}}_{\text{quality effect}} \left(\frac{v_o}{v_s} - 1\right) + \underbrace{\left(\frac{v_\ell(t)}{v_s} - 1\right)}_{\text{resale effect}}$$

Trading dynamics are driven by two fundamental forces:

Quality vs. Resale Effect

Model

$$\frac{\Gamma}{(1-\tilde{\pi}(t))v_s} = \underbrace{\frac{\tilde{\pi}(t)}{1-\tilde{\pi}(t)}}_{\text{quality effect}} \left(\frac{v_o}{v_s} - 1\right) + \underbrace{\left(\frac{v_\ell(t)}{v_s} - 1\right)}_{\text{resale effect}}$$

Trading dynamics are driven by two fundamental forces:

• Strategic Substitutability: $\tilde{\pi}(t)$ depends on trading decisions in the past

No trade in the past \Longrightarrow avg. quality $\tilde{\pi}(t)$ increases over time

Quality vs. Resale Effect

$$\frac{\Gamma}{(1-\tilde{\pi}(t))v_s} = \underbrace{\frac{\tilde{\pi}(t)}{1-\tilde{\pi}(t)}}_{\text{quality effect}} \left(\frac{v_o}{v_s} - 1\right) + \underbrace{\left(\frac{v_\ell(t)}{v_s} - 1\right)}_{\text{resale effect}}$$

Trading dynamics are driven by two fundamental forces:

• Strategic Substitutability: $\tilde{\pi}(t)$ depends on trading decisions in the past

No trade in the past \Longrightarrow avg. quality $\tilde{\pi}(t)$ increases over time

• Strategic Complementarity: $v_{\ell}(t)$ depends on future trading decisions $(\lambda \gamma(t))$

No trade in the future \Longrightarrow low incentive to buy

Steady State

Trading Dynamics

 $\underline{\pi}$: existence of a no-trade SS equilibrium ($\gamma = 0$)

 $\bar{\pi}$: existence of a trade SS equilibrium ($\gamma = 1$)

Do search frictions matter?

Let's focus on $r > \kappa$. Then the complementarity dominates the quality effect.

For $\lambda \to \infty$:

- Acquiring a lemon is not very costly, ...
- ... but the quality of assets in the market is small.
- It is easier to sustain to trade, ...
- ... but at the expense of fragility.

For $\lambda \to 0$:

- Acquiring a lemon is very costly, ...
- ... but the quality of assets in the market is high.
- Multiplicity complete disappears.

Multiplicity driven entirely by complementarity, but search frictions determine how strong it is.

Quality falls unexpectedly to $\pi(0) < \underline{\pi}\left(\frac{r}{r + \lambda(1-\underline{\pi})}\right)$.

Intervention

MMLR is a large player that ...

- has deep pockets
- is also subject to asymmetric information
- \bullet can commit to a policy announced at time t=0

Policy:

- time of intervention $T \in [0, \infty)$
- quantity of lemons bought $-Q \in \left[S\left(1 \frac{\pi(0)}{\bar{\pi}}\right), S(1 \pi(0))\right]$

Trading Dynamics

• purchase price – $P \in [v_{\ell}(T), v_s]$

Announcement Effect

Equilibrium Prices and Trading Dynamics – $T=0.25,\,Q_{min},\,P_{\min}$

Intuition - Market Recovery

The surplus function $\Gamma(t)$ jumps at T for two reasons.

First, an intervention constitutes an option value V_I for lemons that disappers at T:

$$\lim_{t \nearrow T} v_{\ell}(t) = \frac{Q}{S(1 - \pi(0))} P(T) + \left(1 - \frac{Q}{S(1 - \pi(0))}\right) v_{\ell}(T)$$

$$= \underbrace{\frac{Q}{S(1 - \pi(0))} \left(P(T) - v_{\ell}(T)\right)}_{V_{I} \in [0, v_{s} - v_{\ell}]} + v_{\ell}(T)$$

$$= v_{\ell}(T^{-}) \ge v_{\ell}(T)$$

Second, with no trade, the quality of assets also starts improving, but jumps up at T.

But, people take into account $V_I \ge 0$ and anticipate the quality jump. Thus, they start trading before the intervention.

Intuition – Price Recovery

Prices need to support trading in equilibrium with an intervention. They are given by

$$p(t) = v_s - v_b(t).$$

When trading starts again, they jump up discretely.

With partial trading before the intervention, The expected surplus $\Gamma(t)$ remains at 0, but $v_b(t)$ increases due to discounting. Hence, price need to fall.

After the intervention, the quality of assets declines monotonically to its new steady state level. Hence, prices need to increase monotonically.

Optimal Intervention

Trade-off between better allocation of assets and deadweight cost of losses for MMLR.

One can get the following insights:

- For continuous markets, it is optimal to intervene immediately, but at a minimal scale.
- 2. Higher search frictions imply earlier intervention.
- 3. It is never optimal to buy more than the minimum quantity. Why? Deadweight costs as surplus is shifted from future buyers to lemon holders at T.
- 4. It is optimal to either intervene at the lowest or the highest price.
- 5. For sufficiently high social costs, do not intervene.