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1 Basic Set-up

1.1 Economy

We start of with a standard Dixit-Stiglitz type model of monopolistic competition a la

Blanchard and Kiyotaki (1989).

Demand Block

• Aggregate Demand:

1 = βEt

[
(1 +Rt+1)

PtCt
Pt+1Ct+1

]
(1.1)

• Demand for Individual Goods:

Cit =

(
Pit
Pt

)−γ
(1.2)

• Price Index

Pt =

(∫ 1

0

P 1−γ
it di

)1/(1−γ)

(1.3)

where γ > 1 is the elasticity of substitution between individual goods

• Labour-Leisure Choice

CtL
1/ψ
it =

Wit

Pt
(1.4)

where ψ is the Frisch elasticity of labour supply

Supply Block

• Production Function

Yit = AitLit (1.5)

where Ait = exp zit are productivity (supply) shocks

• Expected (Real) Profits

Πit = Eit

[
(1 + τ)

Pit
Pt
Yit −

Wit

Pt
Lit

]
(1.6)

where τ is a sales tax that is rebated (lump-sum) to households
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We will place the analysis in the context of monetary policy. To do so, we simply assume

an (exogenous) process for Mt so that some quantity theory equation holds

Mt = YtPt (1.7)

Two issues:

1) What is the role of the expectation Eit?

2) How are expectations Eit formed?

We do not abandon rationality nor do we fuzz around with preferences. Indeed, both of

these would change the expectations operator in the Euler equation rather than the one on

the firm’s problem.

1.2 Full information

Firms do not have an intertemporal problem. Hence, they can maximize profits state-by-

state by setting prices taking demand Yit = f(Pit) as given

(1 + τ) (Yit + Pit∂Yit/∂Pit)− ∂Yit/∂PitWit/Ait = 0 (1.8)

or

Pit =
1

1 + τ

(
1

εp(Yit) + 1

)
Wit

Ait
(1.9)

where εp(Yit) is the price elasticity of demand which is −1/γ.

Prices are set as a mark-up over (nominal) marginal costs.1 Log-linearizing, using market

clearing, the first-order condition on labour and the demand equation we obtain

pit = pt + µ+ α(yt − ait) (1.10)

The parameter α ∈ (0, 1) determines how elastic the firm’s prices are with respect to aggre-

gate output relative to its own productivity.

1Deviations from the aggregate price is set as a mark-up over real marginal costs.
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Result: Assuming that pt =
∫
pitdi, we get that aggregate output (supply) is independent

of mt. In other words, monetary policy (demand) shocks do not matter, since we have a

vertical aggregate supply curve.

Why? Integrate over pit implies that pt drops out.

1.3 Incomplete Information

Assume now that firms cannot observe their demand Yit. Profits are

Eit =

[
(1 + τ)Yt

(
Pit
Pt

)1−γ

−
(
Wit

AitPt

)
Yt

(
Pit
Pt

)−γ]
(1.11)

Problem: FOC is non-linear in Pt. Hence, we cannot get an exact solution to the FOC for

Pit.

Hence, work with “Certainty-Equivalence”. What is it? (i) quadratic approximation to the

objective function yields linear decision rules; (ii) log-linearize the first-order condition:2

pit = Eit[pt + α(yt − ait)] (1.12)

Now the information set of the firm starts to matter and we need to have a theory of how

firms form their expectations. This can give rise to “frictions” that cause monetary policy

(or demand shocks) to matter.3

Three possibilities:

1. Only observe own price: standard Lucas-Phelps economy with Bayesian updating

2. Sticky information: only a fraction λ of firms obtains new information on p

2We set µ = 0.
3We can view this as a way to justify “sticky” prices beyond ad-hoc time-dependent pricing a la Calvo.

Traditionally, we have relied on state-dependent price adjustments with menu costs. However, prices seem

to be rather flexible, since incentives to adjust are large precisely when the individual price is out-of-whack

a lot. With informational friction, it is fully rational for firms not to adjust their prices.
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3. Noisy information: we obtain a game of strategic complementarities as before

What are the micro foundations for these frictions?

2 Delayed Information

Assume now monetary policy follows

mt = mt−1 + vt (2.1)

where vt ∼ N (0, σ2) is interpreted as a shock to velocity.

Assume further that only a fraction λ observes this shock today, while all others observe the

shock only tomorrow, but have information on all variables from the previous period.

We got

pt =

∫
pitdi =

∫
Eit[pt + αyt]di− α

∫
aitdi =

∫
Eit[αmt + (1− α)pt]di (2.2)

where we have normalized A = 1 and assume that there are no technology shocks.

When receiving information (fraction λ), we have that mt is measurable w.r.t. Eit. When

not (fraction 1− λ), we have Eit = Et−1.

Represented as forecast errors on the price level this gives us

(1− (1− α)λ)(pt − Et−1[pt]) = αλ(mt − Et−1[mt]) + αEt−1[mt − pt]. (2.3)

We have Et−1[mt − pt] = 0. Why? Take expectations w.r.t. Et−1.

This results in an expectations augmented Phillips curve that is – partially – backward

looking.

pt = ξvt +mt−1 (2.4)

yt = (1− ξ)vt (2.5)
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with ξ ∈ (0, 1), where ∂ξ/∂α > 0.

Also: α = ψ+1
ψ+γ

so that the elasticities of substitution and labour supply matter.

Remark: One can introduce persistence by assuming that the arrival of new information is a

stochastic process for individual firms. With probability λ a firm gets then new information

so that its expectations operator is Et. Otherwise, it is Et−j where it has gotten information

j periods ago.

A firm’s information is then geometrically distribution so that we have that a mass λ(1−λ)j

of firms has the expectations operator Et−j. Then, the price level is a fixed point to the

equation

pt =
∞∑
j=0

λ(1− λ)jEt−j[αmt + (1− α)pt]. (2.6)

3 Noisy Information

Assume that firms receive a private signal zit = mt + εit, where εit ∼ N (0, σ2/τ). The

parameter τ ∈ [0,∞) measures the informativeness of the signal. Again, we assume that

with a one-period delay, everyone learns the signal perfectly.

Now, higher-order beliefs matter again. Why? It matters for demand what a firm believes

of other islands and what those islands believe about the firm’s belief, etc.

This implies that pt has to solve

pt =
∞∑
j=1

α(1− α)j−1Ēj
t (mt) (3.1)

where Ēj
t =

∫
Eit[
∫
Eit[. . . j times . . . ]di]di.

Since both variables are normally distributed with relative (!) precision 1 and τ respectively

we again have that the belief is a weighted average of the prior and the signal itself

Eit = Et[nt|zit = nt + εit] = Et−1(mt) +

(
τ

1 + τ

)
(zit − Et−1[mt]) (3.2)
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Again, prices and output are given by

pt = ξ0vt +mt−1 (3.3)

yt = (1− ξ0)vt (3.4)

with ξ0 = ατ
1+ατ

∈ (0, 1).

Note that α matters here. The lower α, the stronger the strategic complementarities.

Remark: To introduce persistence, one can assume that the signals accumulate over time

without full revelation. The problem is then very hard to solve. The way to go is to guess

and verify a log-linear price rule and then to rely on Kalman filtering as the optimal learning

process/signal extraction over time.

4 Microfoundations I: Information Costs

4.1 Set-up

• state st follows a known first-order Markov process

• uτ = (ut, ut+τ ) innovations to this process

• st+τ = Ψ(st, u
τ ) is the transition process

Firms make decisions when to update and obtain a new observation of s.

• D(i) = IN0 → IR are planning dates

• d(i) = D(i)−D(i− 1) are periods of inattentiveness

• FD(i) for t ∈ [D(i), D(i+ 1)) is the information set at t

Key: firms decisions must be measurable w.r.t. FD(i)
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4.2 Updating Problem

Value function for the firm

V (s) = sup
d

∫ d

0

e−rtΠ(s, t)dt+ e−rdE[−K(sd) + V (sd)|s] (4.1)

where sd = Ψ(s, ud).

The problem is thus recursively time-dependent. The optimal adjustment interval depends

on the state s, when the firm has obtain information for the last time.4

The solution (V (s), d(s)) is described by the FOC and the envelope conditions

0 = e−rdΠ(s, d)− re−rdE[−K(sd) + V (sd)|s]− e−rdE[K(sd) + V (sd)|s]
∂Ψ

∂d
(4.2)

Vs(s) =

∫ d

0

e−rtΠs(s, t)dt+ e−rdE[−Ks(sd) + Vs(sd)|s]Ψs(s, u
d) (4.3)

Intuition: Flow value of planning (Π(s, d)) is keeping the old plan chosen at s. Benefit from

updating at d is given by the flow value of having gotten new information minus the costs

of doing so plus the costs of postponing for doing so (saving marginal changes in costs K,

but given up marginal changes in V ).

4.3 Example – Isoelastic Demand

Demand is given by D(εt, Pit) = εtP
−θ
it where εt is an iid shock.

Marginal costs st follows an (independent) geometric Brownian motion so that dst = σstWt

where Wt is a Brownian motion.

Costs of updating are a fraction κ of profits.

Note that the firm’s problem is independent of choosing d and whether to update information

or not. Hence,

max
Pit

E[DPit − sPit] (4.4)

4It is not an optimal stopping time problem which is dependent on the current, observed state.
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with FOC given by

Pit =
θ

θ − 1
E[st] (4.5)

Hence, expected profits are constant during periods of inattentiveness and given by

Π(s, t) = ΞE[st]
1−θ = Ξs1−θ (4.6)

with expected costs of updating being equal to

E[κΞs1−θd ] (4.7)

Solution:

1) Guess that the value function must satisfy V = As1−θ.

2) Use the fact that Et[s
1−θ
d ] = s1−θebd where b = 0.5σ2θ(θ − 1) to obtain

A = max
d

[
Ξ(1− e−rd)

r
+ e(b−r)d(−κΞ + A)

]
(4.8)

3) Solve to obtain (for small κ) approximately

d∗ =

√
4κ

σ2θ(θ − 1)
(4.9)

Hence: information is updated more slowly when costs increase, volatility of MC falls and

demand is less price elastic.

4.4 Example – Phillips Curve

Remark: One can show under some assumptions that the stationary equilibrium distribution

of inattentiveness – the length d – among producers is exponentially distributed with some

parameter ρ. Hence, at any point in time, a fraction ρe−ρx have not planned for x periods

and at every instant the share of firms planning is ρ.

The model consists of

9



• stochastic costs of adjustments κi

• exogenous process for monetary policy mt = pt + yt

• optimal price setting pit = ED[pt + α(yt − ynt )] where ynt is the costless information

steady state

Denote the distribution of time among firms since the last adjustment of prices by D(i). The

price level pt is a fixed point of

pt =

∫
pitdD(i) = ρ

∫ t

−∞
eρ(t−i)Ei[pt + α(yt − ynt )]di (4.10)

Now differentiate with respect to time to obtain

ṗt = αρ(yt − ynt ) + ρ

∫ t

−∞
e−ρ(t−i)Ei[ṗt + α(ẏt − ẏnt )]di (4.11)

which corresponds to the sticky information Phillips Curve we have derived earlier.

5 Microfoundation II: Constraints on Information Pro-

cessing

5.1 Preliminaries

Individuals need to process and use information. They choose how much information they

use, not its content. Before we had that once you get information, you can perfectly use

it. Now you cannot. Hence, one’s behaviour can react continuously, but imprecisely to the

available information.

We borrow a lot from information theory.5 An input X is transformed into an output Y

through a “communication channel” which reduces the uncertainty about X by providing

additional information p(Y |X) (see diagram).

5A great reference for this topic is the book by Clover and Thomas (2006).
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We view rational inattention as the “capacity” of the channel to be limited, so that p(Y |X)

cannot perfectly relate the information.

5.2 Basic Concepts

Shannon’s entropy measures the uncertainty of a random variable

H(X) = −E [log(p(x))] (5.1)

For example, use log2 and interpret the entropy as the number of bits required to describe

the distribution of the random variable.

Let X = {0, 1} with equal probability. Then, we have that

H(X) = −
∫

1

2
log2

(
1

2

)
dx = −2 log2

(
1

2

)
= 1; (5.2)

that is we need 1 bit to describe this random variable.

The mutual information describes how much Y tells us about X

I(X, Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X, Y ). (5.3)

The capacity of an information channel is given by

K = max
p(x)

I(X, Y ) (5.4)

where p(x) is describing the input distribution for the channel that is described by p(Y |X).

5.3 Deriving the Rational Inattention Constraint

Let X be a multivariate normal variable with N (µ,Σ) and Y be a signal about X which

errors distributed according to N (0, Σ̂).
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We have in nats

I(X, Y ) = H(X)−H(X|Y )

=
1

2
ln ((2πe)n|Σ|)− 1

2
ln
(

(2πe)n|Σ̂|
)

=
1

2
ln

(
|Σ|
|Σ̂|

)
(5.5)

With X and Y normally distributed, they maximize mutual information and, hence, define

capacity K of any channel so that

K =
1

2
ln

(
|Σ|
|Σ̂|

)
(5.6)

This yields then the constraint for the posterior covariance matrix

|Σ̂| = e−2K |Σ|. (5.7)

The idea is here to choose the covariance matrix of the posterior belief – or, equivalently,

the covariance matrix of the signals – so that to satisfy this constraint.

Assume, for example that all the signals are specific to each risk, i.e. the errors are uncor-

related across risks. Then, we have that

ΠN
i=1σ̂

−2
ii ≤

e2K

|Σ|
(5.8)

which is a constraint on the joint precision of the signals.

5.4 Example – Mackowiak and Wiederholt

Consider a firm that has an information set sit and sets its price equal to

pit = E[pt − azit|sit] (5.9)

It obtains signals

sp = pt + εt where εt ∼ N (0, σ2
ε ) (5.10)

sz = zit + ψt where ψt ∼ N (0, σ2
ψ) (5.11)
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The firm wants to minimize its expected losses relative to its full information price p∗t , but

is constrained through its information capacity K.

min
σ̂p,σ̂z

E[(pit − p∗t )2] (5.12)

subject to(
σ̂pσ̂z
σpσz

)−2
≤ e2K (5.13)

σ̂2
p ≤ σ2

p (5.14)

σ̂2
z ≤ σ2

z (5.15)

Recall that Bayesian updating just adds the precisions of the two signals so that

σ̂−2p = σ−2p + σ−2ε and σ̂−2z = σ−2z + σ−2ψ (5.16)

Rewriting the problem and using the constraint to get rid of σ̂z, we obtain for the objective

function

min
σ̂p

1

2

(
σ̂2
p + a2

σ2
pσ

2
z

e2K σ̂2
p

)
(5.17)

Hence, for an interior solution we have(
σ̂p
σp

)−2
=

1

a
eK
σp
σz

. (5.18)

More attention is paid to the aggregate shock pt, the larger the capacity K, the less precise

the prior information on pt relative to zit and the smaller the weight on the idiosyncratic

shock in the objective function.

5.5 Remarks

• General equilibrium applications are a problem. Prices for example cannot be market

clearing as decision makers are not reacting precisely and immediately. Also, individual

decision makers cannot optimize precisely. For example, one chooses consumption, but

savings need to be a residual over which one cannot necessarily optimize.
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• Institutions can be designed to precisely deal with information processing and, hence,

are an artefact of rational inattention.

• What about aggregation of correlated information processing?

• Small shocks might lead to inertia or small reaction. Large shocks will change this.

Hence, structural parameters are unlikely to be invariant to the size of shocks. This

makes models calibrated or estimated in normal times irrelevant (quantitatively) for

periods of big shocks.

6 Literature

Veldkamp, Chapter 6 (2011)

Cover and Thomas (2006)

Mackowiak and Wiederholt, AER (2009)

Mankiw and Reis, HB of Monetary Economics (2011)

Reis, REStud (2006)

Sims, HB of Monetary Economics (2011)

14


