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1 Friction I – Limited Enforcement

1.1 Model

• Preferences:

E

(

∞
∑

t=0

βtu(ct)

)

(1.1)

• β ∈ (0, 1), u strictly increasing and strictly concave

• Endowment process: ỹt ∈ {y1, . . . , yS}, iid

• ys with probability πs

Perfect insurance gives lifetime utility equal to

V =
1

1− β
u(E(yt)) (1.2)

More generally, if there are many households and people can be forced to participate, any

Pareto-optimal allocation is described by

1

1− β
u(E(yt)− αi) (1.3)

and
∫

αidi = 0.

Problem:

If αi is too high, person i has no incentive to participate in the insurance scheme (limited

enforcement).

2 Model

• insurer (social planner) can borrow and lend at rate r = 1
β
− 1

• offers a contract to the household
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• history: ht = (y0, . . . , yt)

• contract: {ct}
∞
t=0, where ct = f(ht) for all t

Assumption:

Household can walk away from the insurance scheme at any time, but yt is observable.

2.1 A Social Planning Problem

max
{f(ht)}∞

t=0

E

(

∞
∑

t=0

βt(yt − f(ht))

)

(2.1)

subject to

E

(

∞
∑

t=0

βtu(f(ht))

)

≥ u0 (2.2)

u(f(ht)) + βEt

(

∞
∑

j=1

βj−1u(f(ht+j|ht))

)

≥

u(yt) + βEt

(

∞
∑

j=1

βj−1u(yt+j)

)

for all ht, t (2.3)

If ỹt is iid over time,

vaut = E

(

∞
∑

t=0

βtu(yt)

)

= Et

(

∞
∑

j=1

βj−1u(yt+j)

)

. (2.4)

2.2 Solving – A First Try

Lagrangian:

E

[

∞
∑

t=0

βt

{

(yt − ct) + αt

(

Et

[

∞
∑

j=0

βju(ct+j)

]

− u(yt)− βvaut

)}]

+ φE

[

∞
∑

t=0

βtu(ct)− u0

]

(2.5)

Analysis:
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—⊲ Define µt = µt−1 + αt, where µ−1 = 0. This allows us to use the formula

∞
∑

t=0

βtαt

(

∞
∑

j=0

βju(ct+j)

)

=
∞
∑

t=0

βtµtu(ct).

—⊲ Then: we can solve a saddle-point problem given by

max
{ct}

min
{µt},φ

E

[

∞
∑

t=0

βt
{

(yt − ct) + (µt + φ)u(ct)− (µt − µt−1) (u(yt)− vaut)
}

]

− φu0. (2.6)

—⊲ The solution is described by the FONC

u′(ct) =
1

µt + φ
, (2.7)

the condition that µt > µt−1 whenever the PC binds and φ > 0. Note that µt is an endogenous

stochastic process here that depends on the endowment shock.

—⊲ Hence, whenever the PC is binding, consumption increases. Otherwise, it stays constant.

Remark:

The general idea behind this approach is that the Lagrange multiplier becomes a state

variable keeping track of how binding the forward looking constraints were in the past.

There are several issues with this approach, though. First, to be useful one looks for a

recursive formulation. This formulation can be derived under weak conditions (see Marcet

and Marimon (1998)). Second, solutions to the recursive formulation are only sufficient, but

not necessary.

2.3 Solving – A Second Try

Problem:

—⊲ contract keeps track of entire history: ct : H
t → IR
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—⊲ participation constraints are forward-looking

Idea:

Summarize entire history in a single state variable, which is a promised utility level, i.e.

ut+1 = Et

(

∞
∑

j=1

βj−1u(ct+j)

)

. (2.8)

New Social Planning Problem:

V (u0) = max
{cs,us}Ss=1

S
∑

s=1

πs [(ys − cs) + βV (us)] (2.9)

subject to
S
∑

s=1

πs(u(cs) + βus) ≥ u0 (2.10)

u(cs) + βus ≥ u(ys) + βvaut for all s ∈ S (2.11)

cs ∈ [c, c] and us ∈ [vaut, u] for all s ∈ S (2.12)

Remark: Note that the participation constraints in conjunction with the restriction on us

are key for being able to solve this problem. If the RHS of the participation constraint is

not time invariant and if promised utility cannot be restricted to a compact interval, it is in

general very hard to solve this recursive problem.

2.4 The Optimal Contract

FONC (off the boundary):

−πs + λπsu
′(cs) + µsu

′(cs) = 0 (2.13)

πsβV
′(us) + βλπs + µsβ = 0 (2.14)

Envelope condition:

V ′(u0) = −λ (2.15)
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Solution is characterized by three “equations”:

u′(cs) = −
1

V ′(us)
for all s ∈ S (2.16)

V ′(us) = V ′(u0)−
µs

πs

(2.17)

{s ∈ S|µs > 0} ∪ {s ∈ S|µs = 0} (2.18)

—⊲ the first equation equates the IMRS for the principal and the consumer

—⊲ the second and third “equations” describe the wedge that the PC drives into the risk

sharing problem

Case 1: µs = 0, i.e. non-binding PC

—⊲ us = u0 and u′(cs) = − 1
V ′(u0)

—⊲ constant consumption between periods for state s

—⊲ why? ut−1 = u0 implies that u′(ct−1) = − 1
V ′(u0)

= u′(ct,s) and u is strictly concave

Case 2: µs > 0, i.e. binding PC

—⊲ we have two equations in two unknowns

−u′(cs)V
′(us) = 1 (2.19)

u(cs) + βus = u(ys) + βvaut (2.20)

—⊲ since the PC is binding and V is strictly concave, we have us > u0 ≥ vaut

—⊲ the PC then implies that cs < ys

—⊲ give up consumption today in exchange for higher future expected utility

—⊲ history does not matter directly; only the current shock ys matters (“amnesia”)

—⊲ history matters indirectly, however, as u0 determines which PCs are binding
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2.5 Dynamics

Question: Which constraints are binding?

Proposition 2.1. There exists a cut-off state s′ such that

(i) ys < ys′ ⇒ µs = 0 and

(ii) ys ≥ ys′ ⇒ µs > 0.

Proof. Suppose there exists ys > ys′ such that the PC is binding for s′, but not for s. Then,

us = u0 and us′ > u0. Since the PC for state s is not binding, we have

u(cs) + βus > u(cs′) + βus′

which implies that cs′ < cs and u′(cs′) > u′(cs).

Also, from the concavity of V , we have −V ′(us′) > −V ′(us) = −V ′(u0). Hence,

−u′(cs′)V
′(us′) > −u′(cs)V

′(us).

A contradiction.

—⊲ This implies that cs and us are weakly increasing in ys for any given u0. Hence, the

optimal contract raises both current consumption and future consumption in response to a

contemporaneous endowment shock.

—⊲ People with “good” shocks are constrained, as their outside option is high relative to

their promised utility.

Proposition 2.2. A (fictitious) cut-off value for when constraints are binding, ȳ(u0), is

strictly increasing in u0.

Proof. The cut-off value is defined as

u(ȳ(u0)) = u(c(u0)) + β (u0 − vaut) , (2.21)
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where c(u0) satisfies the FONC

−u′(c(u0))V
′(u0) = 1. (2.22)

Since V is concave, c(u0) is weakly increasing in u0.

—⊲ Having realization yS = maxs∈S ys is an absorbing state with promised utility u forever

and associated consumption level c such that

u(c) + βu = u(yS) + βvaut (2.23)

and all other participation constraints being non-binding.

Remark: For all u0 > u, none of the PC is binding and a first-best is obtained.
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3 Friction II – Limited Commitment

3.1 Model

• two agents

• uncertainty: s ∈ S, where s pins down the endowment distribution across agents

• {y1s , y
2
s}s∈S, where y1s + y2s = Ys

• πs: probability of state s, iid

• “symmetric shocks”: equal probability for each agent to obtain ys

Assumption: Both agents can choose autarky forever at any time (two-sided limited com-

mitment).

3.2 PCs and their Microfoundation

The PC are given by

u(cit) + Et

[

∞
∑

τ=1

βτu(cit+τ )

]

≥ u(yit) + βVaut (3.1)

for i = 1, 2 and for all t, s.

Again, an allocation is given by {c1t , c
2
t}

∞
t=0, where cit : H

t → [0, Ys].

Question: What are the microfoundations for these constraints?

Idea:

• look at a “transfer game”

• people receive stochastic endowments each period and make history-dependent trans-

fers to each other
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• transfers are given by τ it,s ∈ [0, yit,s]

• interpret allocation as resulting from people transfering part of their endowment

• allocation is feasible if c1t,s + c2t,s ≤ Ys

• allocation is incentive feasible if it is feasible and satisfies the PCs

Proposition 3.1. An allocation is a subgame perfect equilibrium of the transfer game if and

only if it is incentive feasible.

Intuition:

Use “worst” equilibrium as a threat (Abreu, Econometrica (1988)).

1. Autarky is a subgame perfect equilibrium. Never transfer any endowment is a best

response to never transfering any endowment.

2. Any other subgame perfect equilibrium must yield higher utility. One can always

choose not to make any other transfers today and in the future. This gives the utility

value of autarky.

3. Suppose now that an allocation satisfies (3.1) and is feasible. Then we can define

transfers that lead to the allocation.

Consider the following trigger strategy: make these transfers only if one has received

transfers according to the allocation in the past; do not make any transfers again in the

future, if one has not received these transfers in the past. These strategies constitute

a subgame-perfect equilibrium.

4. Consider now transfers that correspond to some subgame perfect equilibrium. These

transfers lead to an allocation (c1, c2). Then, at any date and state, an agent must

be (weakly) better off with this allocation (or transfers) than with not making any
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transfers today and never again. If he chooses not to make transfers today and never

again, he achieves an alternative utility that is weakly better than

u(yit,s) + βvaut. (3.2)

This implies that the utility derived from (c1, c2) is greater than this utility level.

3.3 Recursive Formulation of (Constrained) Efficient Allocations

V (u0) = max
{cs,us}Ss=1

S
∑

s=1

[πsu(Ys − cs) + βV (us)] (3.3)

subject to
S
∑

s=1

πs(u(cs) + βus) ≥ u0 (3.4)

u(cs) + βus ≥ u(y1s) + βvaut for all s ∈ S (3.5)

u(Ys − cs) + βV (us) ≥ u(Ys − y1s) + βvaut for all s ∈ S (3.6)

cs ∈ [0, Ys] and us ∈ [vaut, Vmax] for all s ∈ S (3.7)

Remark: The value function V describes the (constrained) Pareto frontier for risk-sharing in

this problem. The optimal contract {cs, us}s∈S is “renegotiation-proof”, in the sense that it

describes an efficient subgame perfect equilibrium.

3.4 The Optimal Contract

We first show that only one PC can be binding in any state s ∈ S.

Proposition 3.2. Let Si ⊂ S be the set of states where agent i’s constraint is binding for

an optimal contract. Then, S1 ∩ S2 = ∅.

Proof. Suppose there exists s ∈ S1 ∩ S2. Since us ≥ vaut and the constraint for agent 1

binds, we have cs ≤ y1s . Similarly, for agent 2, Ys − cs ≤ Ys − y1s . Hence, cs = y1s , us = vaut
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and V (us) = vaut. This implies that only the autarkic allocation is subgame perfect, since

V (vaut) = vaut. A contradiction.

FONC:

βπsV
′(us) + λβπs + βµ1

s + βµ2
sV

′(us) = 0 (3.8)

−πsu
′(Ys − cs) + λπsu

′(cs) + µ1
su

′(cs)− µ2
su

′(Ys − cs) = 0 (3.9)

This implies that optimal contracts are given by

u′(Ys − cs)

u′(cs)
= −V ′(us) (3.10)

for all s ∈ S.

Result:

(i) Concavity of V implies that us is a non-decreasing function of cs.

(ii) Hence, today’s consumption and promised utility move together, i.e. good endowment

shocks are smoothed out over time.

(iii) Binding participation constraints might prevent perfect smoothing across endowment

realizations.

3.5 Dynamics

Case 1: s /∈ S1 ∪ S2

—⊲ by the envelope theorem: V ′(u0) = −λ

—⊲ us = u0: allocation of consumption remains unchanged from last period

Case 2: s ∈ S1

—⊲ µ1
s > 0 implies V ′(us) < V ′(u0)

—⊲ Concavity of V implies us > u0: person 1’s consumption increases from last period
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Case 3: s ∈ S2

—⊲ µ2
s > 0 implies V ′(us) > V ′(u0)

—⊲ Concavity of V implies us < u0: person 1’s consumption decreases from last period

3.6 History Dependence

The optimal contract exhibits

• positive correlation between current consumption and current income

• positive correlation between current consumption and lagged income

whenever the first-best is NOT a subgame-perfect equilibrium.

Why? Consider person 1:

—⊲ if shocks cannot be smoothed over states, they are smoothed out over time

—⊲ high endowment shocks cause PC to bind: us and cs both increase

—⊲ higher us means higher consumption in the future c(us) from the FONC

Conclusion: Limited commitment endogenously introduces persistence into allocations.

3.7 Long-run Dynamics

Case 1: Some first-best allocation is incentive feasible.

Suppose there is no aggregate risk. Then, a first-best is incentive feasible if and only if1

1

1− β

∑

s∈S

πsu

(

Y

2

)

≥ u(ymax) + βvaut. (3.12)

1With aggregate shocks the condition would become

u

(

Ys

2

)

+
β

1− β

∑

s∈S

πsu

(

Ys

2

)

≥ u(max{y1s , y
2

s}) + βvaut (3.11)

for all s ∈ S.
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This is the case if

• β is close to 1

• u is very concave

• V ar[y] is large

Proposition 3.3. For any initial condition u0 ∈ [vaut, V (vaut)], the stochastic process {ut}
∞
t=0

converges w.p. 1 monotonically to the closest first-best allocation.

Case 2: No first-best allocation is incentive feasible.

Proposition 3.4. For any initial condition u0 ∈ [vaut, V (vaut)], the stochastic process {ut}
∞
t=0

converges weakly to the same non-degenerate distribution of promised utility.

3.8 Decentralizing Constrained Optimal Allocations

Kehoe and Levine (1993)

Idea:

• trading à la Arrow-Debreu

• however: trades must be enforced throughout time

• threat: permanent exclusion from trading in the future

• period 0 trades must be individual rational later on (“self-enforcing”)
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Household problem:

max
{ct(ht)≥0}

∞
∑

t=0

∑

ht

βtπ(ht)u(ct(h
t))

subject to
∞
∑

t=0

∑

ht

q0t (h
t)ct(h

t) ≤
∞
∑

t=0

∑

ht

q0t (h
t)yt(h

t)

u(ct(h
t)) + βEt

[

∞
∑

j=1

βj−1u(ct+j)

]

≥ u(yt(h
t)) + βEt

[

∞
∑

j=1

βj−1u(yt+j)

]

for all ht, t

Result: If there is a single good, an allocation is constrained efficient if and only if it is a

“constrained competitive equilibrium” with transfer payments.

—⊲ decentralization of a “second-best”

—⊲ key: constraint set of households is convex

—⊲ critique: how is permanent exclusion enforced on markets?

Alvarez and Jermann (2002)

Idea:

• translate participation constraints into (sequential) borrowing constraints

• hence: restrictions on (negative) asset holdings

• sequentially complete markets with (endogenous) restrictions on size of trades

Recursive Household problem:

Jt(a, s
t) = max

c(st)≥0,{a′(st+1,st)}
u(c(st)) + βE [Jt+1(a

′, st+1)]

subject to

ct(s
t) +

∑

st+1|st

q(st+1, s
t)a′(st+1, s

t) ≤ yt(s
t) + a

a′(st+1, s
t) ≥ Bt+1(st+1, s

t) for all st+1
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Key refinement

Jt+1(Bt+1(st+1, s
t), st+1) = u(yt+1(s

t+1)) + βvaut (3.13)

Hence: Replace PCs with endogenous borrowing limits and restrict a′ < 0 to a level that

makes the household indifferent between paying back the debt and choosing his outside

option.

Again, version of both Welfare Theorems hold.

Question: What are the effects on asset prices?

Proposition 3.5. Let {ci}i∈I be a constrained efficient allocation. If

u(cj(st+1, s
t)) + βE

[

∞
∑

j=1

βj−1u(ct+1+j)

]

> u(yj(st+1, s
t)) + βvaut (3.14)

then
u′(cj(st+1, s

t))

u′(cj(st))
= max

i∈I

u′(ci(st+1, s
t))

u′(ci(st))
. (3.15)

Unconstrained agents in tomorrow’s state st+1 have highest MRS and determine asset prices

in equilibrium

q∗(st+1|s
t) = βπ(st+1|s

t)max
i∈I

u′(ci(st+1, s
t))

u′(ci(st))
(3.16)

Intuition:

• unconstrained agents can alter their choice

• asset prices must be such that they have no incentive to do so

• a constrained agent j would like to borrow more in order to increase cj(st)

q∗(st+1|s
t) > βπ(st+1|s

t)
u′(cj(st+1, s

t))

u′(cj(st))
(3.17)

• an agent is constrained when the endowment is high in state st+1
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• he has then an incentive to default

Risk-free rate must be lower than in a complete markets environment. Why? Otherwise too

much lending.
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4 Friction III – Private Information

4.1 Model

We look now at an infinitely repeated principle agent problem with private information.

Principal

• risk-neutral, i.e. linear utility

• can borrow or invest at the constant gross interest rate (1 + r) = 1/β

Agent

• risk-averse with preferences represented by u : (a,∞) −→ IR

• Assumptions: (i) sup u(c) < ∞, (ii) inf u(c) = −∞, (iii) limc→a u
′(c) = ∞, (iv) −u′′

u′
is

non-increasing

• Example: u(c) = − exp(−αc)

Private Information

• iid endowment process: ys with probability πs, where s ∈ S

• endowment realizations are private information

• agent makes reports to the principal about his state (direct mechanism)

• report in period t: σt : S
t −→ S

• reporting strategy: σ = {σt}
∞
t=0

• truthful report: σ̂, where σ̂t(s
t) = st for all s

t and for all t (revelation principle)
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4.2 Sequential Problem

A contract specifies consumption ct for each possible history st. The optimal contract in

sequential form is given by

V (u0) = max
{ct(st)≥0}

E

[

∞
∑

t=0

βt(yt − ct)

]

(4.1)

subject to

E

[

∞
∑

t=0

βtu(ct|σ̂t)

]

≥ u0 (4.2)

E

[

∞
∑

τ=t

βτu(cτ |σ̂)

]

≥ E

[

∞
∑

τ=t

βτu(cτ |σ)

]

for all σ for all t (4.3)

The last constraint is the incentive compatibility constraint.

4.3 Recursive Problem

Question:

How can we formulate the incentive compatibility constraints in recursive fashion?

—⊲ Green (1987): “temporary incentive compatibility constraints” (t.i.c)

—⊲ no gains from one-period deviations from truth-telling:

u(ct|σ̂
t)+βEt

[

∞
∑

j=1

βj−1u(ct+j+1|σ̂
t+j+1)

]

≥ u(ct|σt)+βEt

[

∞
∑

j=1

βj−1u(ct+j+1|(σ̂1, . . . , σ̂t−1, σt, . . . , σ̂t+j+1))

]

(4.4)

for all σt and all t.
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Define vmax = supu(c)
1−β

. The recursive problem of maximizing profits is then given by

V (u0) = sup
{bs,us}Ss=1

S
∑

s=1

[πs(−bs) + βV (us)] (4.5)

subject to
S
∑

s=1

πs(u(ys + bs) + βus) = u0 (4.6)

u(ys + bs) + βus ≥ u(ys + bk) + βuk for all s, k ∈ S × S (4.7)

bs ∈ (a− ys,∞) and us ∈ (−∞, vmax] for all s ∈ S (4.8)

Remark:

The promise keeping constraint must hold exactly here. Intuitively, by granting a higher

promised utility today than required, some t.i.c. in earlier periods might be violated.

Bounds on Value Functions:

—⊲ a fixed payment of b̄(u0) is incentive feasible, where b̄(u0) solves

1

1− β

S
∑

s=1

πsu(ys + b̄) = u0 (4.9)

—⊲ the first-best c̄(u0) is NOT incentive feasible, but would deliver higher profits, since it

is costly to provide incentives

—⊲ bounds are given by

−
b̄(u0)

1 − β
≤ V (u0) <

1

1− β

S
∑

s=1

πs(ys − c̄(u0)) (4.10)

—⊲ one can show that V is concave and that these bounds imply that limu0→−∞ V ′(u0) = 0

and limu0→umax
V ′(u0) = −∞2

Assumption:

V is strictly concave and continuously differentiable everywhere.

2Due to the Inada condition it is cheap to increase u0 for low levels of utility, but due to the upper bound

it is expensive to increase u0 for high levels of utility.
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4.4 The Optimal Contract

One can show that only the “local downward” constraints bind, i.e. for the optimal contract

u(ys + bs) + βus = u(ys + bk) + βuk (4.11)

if and only if k = s− 1.

There is intertemporal insurance. Transfers are higher the lower the current income in

exchange for lower future promised utility,

bs−1 ≥ bs and us−1 ≤ us.

There is “co-insurance”, i.e. both the principal and the agent benefit from higher income.

• Since local downward constraints (4.11) bind, we obtain

u(ys + bs) + βus = u(ys + bs−1) + βus−1 > u(ys−1 + bs−1) + βus−1 (4.12)

• It must be the case, that

−bs + βV (us) ≥ −bs−1 + βV (us−1). (4.13)

Why?

Suppose not. Then set bs = bs−1 and us = us−1 (i.e. replace (bs, us) by (bs−1, us−1)).

This then increases profits. Since in any optimal contract only the local downward

constraint (4.11) binds, this new contract satisfies incentive feasiblity and leaves total

promised utility unchanged. This is a contradiction with the fact that the original

allocation was optimal.

4.5 Martingale Property

FONC:

−πs + λπsu
′(ys + bs) + µsu

′(ys + bs)− µs+1u
′(ys+1 + bs) = 0 (4.14)

πsβV
′(us) + λπsβ + µsβ − µs+1β = 0 (4.15)
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for all s = 1, . . . , S, where µ1 = 0 and, by convention, µS+1 = 0.

Proposition 4.1. V ′(u0) is a martingale.

Proof. From the envelope condition, we obtain that V ′(u0) = −λ. Sum over the second

FONC with respect to s to obtain

S
∑

s=1

πsβV
′(us) + λβ = 0. (4.16)

Hence, E [V ′(ut+1)] = V ′(ut).

Hence: It is optimal to equate today’s marginal costs of delivering u0 to the expected costs

of delivering (u1, . . . , uS) tomorrow.

4.6 Dynamics

The key result is that the agent gets “impoverished” with probability one. That is promised

utility drifts downwards over time. The optimal contract itself smooths consumption, but

at the same time increases variability of promised future utility.

Proposition 4.2. ut → −∞ a.s.

Proof. Step 1:

uN > u0 > u1, i.e. continuation values spread out over time. This is a direct consequence of

the FONC, the fact that bs−1 ≥ bs, us−1 ≤ us and concavity of V .3

Step 2:

V ′ is a non-positive martingale. By the Martingale Convergence Theorem, V ′ → ξ almost

surely. As V ′ is strictly concave and limu0→−∞ V ′(u0) = 0, it suffices to show that ξ = 0

almost surely.

3In fact, after a long enough sequence of positive (negative) shocks, the agent becomes a creditor (debtor).
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Step 3:

Suppose to the contrary, that limt→∞ V ′(ut) = ξ < 0, implying that u0 converges almost

surely to some finite level ũ. It suffices to derive a contradiction for a set of paths (s1, s2, . . . )

that occur w.p. 1. Note that the set of paths where s = N occurs only finitely many times

has probability 0. Hence, we rule out those paths.

Take any sequence of promised utility over time. Take a subsequence {ut} where s = N for

all t. There exists then a convergent subsequence ũt → ũ. Denote by g the law of motion of

the stochastic process describing the evolution of ut, or

ut+1 = g(ut, s) (4.17)

where g is continuous by the Theorem of the Maximum. Hence, limt→∞ g(ũt, s = N) =

g(ũ, N). Since V is continuously differentiable, we have

V ′(ũ) = lim
t→∞

V ′(ũt+1) = lim
t→∞

V ′(g(ũt, s = N)) = V ′(g(ũ, N)). (4.18)

Hence, by strict concavity of V , we have ũ0 = ũN which contradicts Step 1.

4.7 Some final remarks

—⊲ Atkeson and Lucas (1992) and (1995) characterize optimal allocations for a situation

with many agents and a closed economy. Their characterization is based on a decentralization

of optimal allocations. Hence, it is based on an appropriate version of the Second Welfare

Theorem. The main difficulty in these papers arises from the fact that the distribution of

promised utility is a state variable.

—⊲ Other papers allow for the accumulation of assets. Examples are Cole and Kocherlakota

(2001) which introduce hidden storage and Ligon, et al. (2000) that introduce storage into

the two-sided limited commitment model.

—⊲ Comparison between the long-run dynamics of the three contracting models:
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• One-sided limited commitment: Flat identical consumption profile

• Two-sided limited commitment: Stable distribution of consumption inequality (for

S > 2 and no first-best incentive feasible)

• Hidden information: Almost all people become impoverished
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