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Chapter 1

A Road Map

1.1 The Neo-classical Macroeconomic Model

Environment

• discrete time, infinite horizon: t = 0, 1, . . .

• set of states: S at each time t with s0 ∈ S being the initial state at t = 0

• transition probabilities: πτ (s
τ |st) where st = (s0, s1, . . . , st) for all t and τ

—B induce a probability measure πt(s
t) at time t

• alternatively: initial probability measure π0 on S (where S is the set of all infinite

paths over time)

Households

• preferences
∞∑
t=0

∑
st

βtπt(s
t)u(ct(s

t)) (1.1)

• endowment: one unit of labor, i.e. nt ∈ [0, 1] for all t
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• u is twice continuously differentiable, strictly increasing, strictly concave and satisfies

limc→0 uc(·) =∞

Technology

• initial capital stock is given: k0

• feasibility

ct(s
t) + xt(s

t) ≤ At(s
t)F (kt(s

t−1), nt(s
t)) (1.2)

• capital accumulation

kt+1(st) = (1− δ)kt(st−1) + xt(s
t) (1.3)

• F is homogeneous of degree one: F (k, n) = nf(k̃), where k̃ ≡ k
n

• Fi(·) > 0, Fii(·) < 0, limk→0 Fk(·) = limn→0 Fn(·) =∞, limk→∞ Fk(·) = limn→∞ Fn(·) =

0

This is the most stripped down description of an economy where intertemporal decisions

(savings and investment) matter.

Goal:

We would like to understand

• what is “best” for this economy,

• what the economy can achieve “in equilibrium”,

• and whether there is a role for “macroeconomic policy”.
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1.2 Social Planner’s Problem

Sequential planning problem

sup
{ct,nt,kt+1}∞t=0

∞∑
t=0

∑
st

βtπt(s
t)u(ct(s

t)) (1.4)

subject to

kt+1(st) = (1− δ)kt(st−1) + At(s
t)F (kt(s

t−1), nt(s
t))− ct(st) for all st

kt(s
t) ≥ 0, ct(s

t) ≥ 0, nt(s
t) ∈ [0, 1] for all st

k0 given

More generally, we look at problems of the sort

sup
{ut}∞t=0

E0

[
∞∑
t=0

βtr(ut, xt)

]
(1.5)

subject to

xt+1 = g(xt, ut, εt+1) for all t

x0 given

where

• r is a “return” function

• g a constraint (more generally a constraint set)

• ut “control variables”

• xt “state variables”

Bellmann equation

V (x) = sup
u
r(u, x) + βE [V (g(x, u, ε)] (1.6)

How do we proceed?
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• find policy fct. u = h(x) to obtain endogenous law of motion g(x, h(x), ε)

—B existence of policy function

—B h is time-invariant

—B given x0 we can fully describe the optimal dynamic behaviour of the economy

• need to solve for the value function V which is a fixed point of the Bellman equation

1.3 What lies ahead?

Questions:

1. How can we be sure that a solution to the recursive problem is a solution to the

sequential problem?

—B Principle of Optimality

2. How can we find the (unique) solution to a Bellman equation?

—B contraction mapping theorem

—B basic computational techniques

3. How can we be sure that the solution to the social planning problem is a competitive

equilibrium?

—B Welfare Theorems

Remark: With optimal economies, there is a tight connection between the social planning

problem and competitive equilibrium. We can then use the following approach to solve for

a competitive equilibrium of such an economy.

1. Define equilibrium and a planning problem.

2. Establish the welfare theorems.

3. Formulate the planning problem recursively.
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4. Apply numerical methods to solve the recursive problem.

With “non-optimal economies” things are a bit more complicated as equilibrium and the

solution of a planning problem do not correspond to each other. However, one can think

of (macroeconomic) policy moving the economy to a (second- or first-best) optimum by

changing people’s behaviour.

1.4 Literature

Sargent & Ljunqvist – Ch. 3/4

Adda & Cooper – Ch. 2 and Ch. 5
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Chapter 2

The Principle of Optimality

Question: How can we be sure that a solution of the Bellman equation solves the sequential

social planning problem?

We only look at the case of no uncertainty.

Principle of Optimality:

“An optimal policy has the property that whatever the initial state and initial decision are,

the remaining decisions must constitute an optimal policy with regard to the state resulting

from the first decision.”

2.1 Main Result

Notation (follows SLwP):

• X state space

• Γ : X −→ X constraint correspondence

• F : A −→ IR return function, where A = {(x, y) ∈ X ×X|y ∈ Γ(x)}

18



Set of Feasible Plans:

Π(x0) = {{xt}∞t=0|xt+1 ∈ Γ(xt)}

Assumption 2.1.1. 1. Γ(x) is nonempty for all x ∈ X.

2. For all x0 ∈ X and all x ∈ Π(x0),

u(x) = lim
n→∞

n∑
t=0

βtF (xt, xt+1) (2.1)

exists.

Define the sequential problem (SP), V ∗ : X −→ IR ∪ {−∞,+∞}, as

V ∗(x0) = sup
x∈Π(x0)

u(x) = sup
x∈Π(x0)

lim
n→∞

n∑
t=0

βtF (xt, xt+1). (2.2)

Define the corresponding functional equation (FE) as

V (x) = sup
y∈Γ(x)

F (x, y) + βV (y). (2.3)

The key step is to realize that for all x0 ∈ X and any feasible plan x ∈ Π(x0),

u(x) = lim
n→∞

n∑
t=0

βtF (xt, xt+1) (2.4)

= F (x0, x1) + β lim
n→∞

n∑
t=0

βtF (xt+1, xt+2) (2.5)

= F (x0, x1) + βu(x′) (2.6)

where x′ is the continuation of the plan after x0, i.e. starting with x1.

Theorem 2.1.2. The function V ∗ satisfies the FE. Furthermore, if limn→∞ β
nV (xn) = 0

for all x ∈ Π(x0) for all x0 ∈ X, then V = V ∗.
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2.1.1 Proof

See tutorial by TA and SLwP pp. 71-74.

2.1.2 Some intuition

Suppose the sup is attained in SP. Then, we have

V ∗(x0) ≥ u(x̂) for all x̂ ∈ Π(x0).

In particular, fix any x1 ∈ Γ(x0). Then, using the key step we discussed above,

V ∗(x0) ≥ F (x0, x1) + βu(x̂′) for all x̂′ ∈ Π(x1)

and in particular

V ∗(x0) ≥ F (x0, x1) + βV ∗(x1).

Since x1 was arbitrary, the result follows.

Conversely, suppose the sup is attained in the FE. Expanding the LHS of the functional

equation

V (x0) ≥ F (x0, x1) + βV (x1)

for any x ∈ Π(x0), we obtain

V (x0) ≥ F (x0, x1) + βF (x1, x2) + · · ·+ βnV (xn).

Using the assumption on the limit in the statement of the Theorem, we get

V (x0) ≥ u(x0)

which is just the definition of V ∗(x0), since x was chosen arbitrarily.

Remark: We need the boundedness condition, since there could be solutions to FE which are

not solutions to the SP (for example V (x0) = +∞ for all x0 certainly is a solution to FE,

but might not be a solution of the SP).
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Remark: It can be very useful to establish uniqueness of the solution to a functional equation.

If this is the case, we have by our result on the equivalence of value functions that V = V ∗

immediately.

2.2 Equivalence of Policy Functions

Question: Given the value function corresponds to the value of the sequential problem, what

about the policy function and the solution to the SP? Are they equivalent?

We call a plan x∗ ∈ Π(x0) optimal if it attains the supremum V ∗.

Theorem 2.2.1. Let x∗ be an optimal plan. Then

V ∗(x∗t ) = F (x∗t , x
∗
t+1) + V ∗(x∗t+1) (2.7)

for all t.

Furthermore, any feasible plan x∗ ∈ Π(x0) with lim supt→∞β
tV ∗(x∗t ) ≤ 0 that satisfies this

equation is an optimal plan.

2.2.1 Proof

See discussion by TA.

2.3 Digression: Variational Approach

Suppose {x∗t+1}∞t=0 solves the sequential problem. Then for all t, x∗t+1 must solve

21



max
y
F (x∗t , y) + βF (y, x∗t+2) (2.8)

subject to

y ∈ Γ(x∗t ) (2.9)

x∗t+2 ∈ Γ(y) (2.10)

There is no variation of x∗t+1 for any t that can improve upon the optimal policy. This yields

a system of second-order difference equations described by the (necessary) Euler equations:

0 = Fy(x
∗
t , x
∗
t+1) + βFx(x

∗
t+1, x

∗
t+2) (2.11)

We have an initial condition x0. Hence, we need the transverality condition as a boundary

condition to characterize the optimal plan,

lim
t→∞

βtFx(x
∗
t+1, x

∗
t+2) · x∗t = 0. (2.12)

Note that this is related to the functional equation. The first-order necessary condition for

a solution to the functional equation is given by

0 = Fy(x, g(x)) + βv′(g(x)) (2.13)

where g(x) is the policy function. Using the envelope condition v′(x) = Fx(x, g(x)) yields the

above expression. Note, however, that given v we have now a first-order difference equation.

2.4 Literature

Stockey, Lucas with Prescott – Ch. 4

Bertsekas (1976) – Main reference on Stochastic Dynamic Programming

22



Chapter 3

Basic Numerical Methods

3.1 Basic Algorithms

Recall that the social planning problem for the stochastic growth model can be reduced to

a Bellmann equation of the form

V (x) = sup
u
r(u, x) + βE [V (g(x, u, ε)|x] . (3.1)

3.1.1 Guess and Verify

Good luck!

3.1.2 Value Function Iteration

Step 1: Define an appropriate state space D for x. Define an initial guess V0. Define a

convergence criterion.

Step 2: Solve maxu r(u, x) + βE [Vj(g(x, u, ε)|x] for every x ∈ D.

Step 3: Calculate Vj+1 = r(h(x), x) + βE [Vj(g(x, h(x), ε)|x] as a new guess, where h(x) is

the solution of Step 2.
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Step 4: Iterate until the convergence criterion is met.

Question: Why does this algorithm work?

Algorithm is built upon the operator

TV = max
u

r(u, x) + βE [V (g(x, u, ε)|x] . (3.2)

• operator T that is a contraction

• hence: convergence to a unique fixed point

FE corresponds to solution of the sequential problem due to the Principle of Optimality.

3.1.3 Policy Function Iteration

Step 1: Define an appropriate state space D for x. Define a convergence criterion. Define

an initial guess for the policy function h0(x) ∈ Γ(x) for all x.

Step 2: Calculate Vj(x) = r(hj(x), x) + βE [Vj(g(x, hj(x), ε)|x] for every x ∈ D.

Step 3: Find hj+1 = arg maxu r(u, x) + βE [Vj(g(x, u, ε)|x]

Step 4: Iterate until the convergence criterion is met.

Idea:

• The value function takes into account the policy function forever, not only for one

period.

• Each iteration (i.e. finding Vj) is costly, but fewer iterations on the value function.

• Finding Vj boils usually down to solving a system of linear equation – once we make

the state space discrete (see below).

Two Questions:
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1. How do we implement continuous state variables and value functions on a computer?

2. How can we speed up our algorithms?

3.2 Discretizing the State Space

• assume that a continuous state variable takes on only a finite number of values

• renders the problem finite-dimensional

• there are also a finite number of possible control policies

—B put state variable x on a grid: x ∈ {x1, x2, x3, . . . , xN}

—B N -dimensional vector x

Question:

How can we implement the two algorithms?

3.2.1 Value function iteration

Our static maximization problem becomes

Vl+1(i) = max
u

r(x(i), u) + β
N∑
j=1

qij(u)Vl(j) (3.3)

for all i.

—B V is now an N -dimensional vector

—B qij describes the transition probability of going from state xi today to state xj tomorrow

—B
∑N

j=1 qij = 1

—B in a deterministic problem: qij ∈ {0, 1}
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3.2.2 Policy function iteration

Our problem of finding a new policy function becomes

h(i) = arg max
u

r(xi, u) + β
N∑
j=1

qij(u)Vl(j) (3.4)

—B solution is an N -dimensional vector

—B to calculate the update for V , use the solution h and stack the vectors for q to obtain

Vl+1 = r(x, h) + βQVl+1 (3.5)

or

Vl+1 = (I − βQ)−1r(x, h) (3.6)

3.3 Exploiting concavity and monotonicity

Fix a state x. Define v(u;x) = r(x, u) + βE[V (x′(u;x))] as the objective function in terms

of the control variable u.

• When v is concave in the control variable u:

—B if v(ui;x) > v(ui+1;x), the value ui is the maximizer

• When the policy function is monotone in the state variable x:

—B if ui is the maximizer for xi, consider only values u > ui for x > xi

Such insights will speed up computations considerably.

3.4 Curse of Dimensionality

—B so far we had one state variable with N values
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—B with k state variables, we have Nk values

—B hence: if k is large, algorithms of this kind become computationally infeasible

3.5 Other Approaches

We will briefly introduce other ideas for directly computing dynamic equilibria. These meth-

ods become increasingly important when the 2nd WFTHM fails to apply.

3.5.1 Iterating on the Euler Equation

Formulate the Euler equation of either the sequential or recursive problem.1 For example

we have

u′(h(x))− β(1 + r)E[u′(h(x′))|x] = 0.

Contraction Operator:

• Think of the Euler equation as a functional equation.

• Show that the operator T on this equation is a contraction.

• Discretize the state space, fix an initial guess and iterate until convergence.

Example:

In Lucas (1978), the FONC for the consumers problem can be formulated as a contraction

mapping, once one takes into account the market clearing conditions (see for example Cooley

Ch. 3).

Monotone Operator:

1The envelope theorem applied to the derivative of the value function makes both equivalent.
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• Discretize the state space and pick an initial guess for the policy function h0.

• Use the Euler equation to generate a monotone (!) sequence of policy functions {hn}

by starting from the initial guess.

• If the sequence of policy functions is uniformly bounded, they will convergence to a

candidate solution h∗.

• Show that h∗ must be the unique solution to the Euler equation (this can be hard!).

3.5.2 Projection Methods: Approximating the Euler Equation Di-

rectly

Idea:

• Recall that we can interpret the Euler equation by T (h(x)) = 0, where T : B1 → B2 is

an operator on a functional space of which we have to find a zero.

• Define an approximation ĥ(x, a) =
∑n

i=1 aiφ(Xi), where φ is some type of polynomial

function of degree n (or the type of approximation) and a = (a1, . . . , an) are weights.

• We also might have to approximate the operator by some T̂ to render the problem

finite-dimensional.

• Note that we only have to find a finite number of parameters, the vector a.

• The weights a are chosen so that T̂ (ĥ(x, a)) is close to the zero function.

Problem:

When is T̂ (ĥ(x, a)) close to 0?

Procedure:
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• Define a residual function

R(x; a) = T̂ (ĥ(·, a))(x). (3.7)

• Define a metric based on the following inner product

< f1, f2 >=

∫ b

a

f1(x)f2(x)ω(x)dx

where ω(x) is a weighing function.

• Compute < R(·; a), pi(·) >, where pi is some test function for i = 1, . . . , l.2

• Find the “best” a.

• Finally, check how good the solution is by approximating T (ĥ).

—B Example 1: Minimize Least Squares

Choose a to solve

min
a

∫
[T̂ (ĥ(x, a)]2dx.

This is just minimizing the L2 norm.

—B Example 2: Collocation Method (specific mass points)

Choose a to solve the following system of equations:

T̂ (ĥ(xi, a)) = 0

for i = 1, · · · , n.

—B Example 3: Method of Moments

Choose a to solve

< |T̂ (ĥ(x, a))|, xi−1 >= 0

for i = 1, · · · , n.

Remark: It is quite important to choose an appropriate degree of approximation and method

to assess how good the approximation is.

2If this inner product is 0, the functions are said to be orthogonal. Hence, the terminology projection

method.
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3.5.3 Approximate the Economy

There are two general approaches.

1. Approximate the value function with other functions that can easily be described by

a finite number of parameters.

Example:

A quadratic approximation of the objective function yields linear decision rules.

2. Approximate the equilibrium locally around the steady state.

Example:

(Log)-linear approximation or second-order approximations

3.6 Literature

Judd – Ch. 12

Cooley – Ch. 3

Adda & Cooper – Ch. 3
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Chapter 4

Competitive Equilibrium

4.1 Arrow-Debreu Equilibrium

Idea: At t = 0 there are markets where people trade state-contingent claims. These claims

are fulfilled or executed later on as time and uncertainty unfolds. A crucial assumption is

that there is perfect enforcement of these claims.

Prices

• pk0 ∈ IR+

• (q0, r0, w0): stochastic processes

• for example: {q0
t (s

t)}∞t=0, where q0
t : St −→ IR+
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4.1.1 Households

max
{ct,`t}∞t=0

∞∑
t=0

∑
st

βtπt(s
t)u(ct(s

t), 1− `t(st)) (4.1)

subject to
∞∑
t=0

∑
st

q0
t (s

t)c(st) ≤
∞∑
t=0

∑
st

w0
t (s

t)`t(s
t) + pk0k0

ct ≥ 0, `t ∈ [0, 1]

Remark: Households could also directly hold capital, make state-contingent investment de-

cisions and rent it out in form of state-contingent claims to firms.

Standard FONCs:

uc(st)
u`(st)

=
q0t (st)

w0
t (st)

(4.2)

βτ−t uc(s
τ )

uc(st)
πt(s

τ |st) = q0τ (sτ )

q0t (st)
(4.3)

4.1.2 Firms

Two types: firms that produce output and firms that produce new capital

Firm I – Final good producers:

max
{kIt ,nt}∞t=0

∞∑
t=0

∑
st

q0
t (s

t)
[
ct(s

t) + xt(s
t)
]
− r0

t (s
t)kIt (s

t)− w0
tnt(s

t) (4.4)

subject to

ct(s
t) + xt(s

t) ≤ At(s
t)F (kIt (s

t), nt(s
t))

kIt ≥ 0, nt ≥ 0

Zero-Profit conditions:

q0
tAt(s

t)Fk(s
t) = r0

t (s
t) (4.5)

q0
tAt(s

t)Fn(st) = w0
t (s

t) (4.6)
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Firm II – Capital good producers:

max
kII0 ,{xt}∞t=0

−pk0kII0 +
∞∑
t=0

∑
st

r0
t (s

t)kIIt (st−1)− q0
t (s

t)xt(s
t) (4.7)

subject to

kIIt+1(st) = xt(s
t) + (1− δ)kIIt (st−1)

kII0 ≥ 0, xt ≥ 0

Zero-Profit conditions:

q0
t =

∑
st+1|st

[
r0
t+1(st+1) + (1− δ)q0

t+1(st+1)
]

(4.8)

pk0 = r0
0(s0) + (1− δ)q0

0(s0) (4.9)

4.1.3 Definition

Definition 4.1.1. An Arrow-Debreu Equilibrium is given by prices (and pricing functionals)

{p̂k0 , q̂0, r̂0, ŵ0} and allocations {ĉ, l̂, n̂, x̂, k̂I , k̂II0 } such that

1. taking prices as given, {ĉ, ˆ̀} solve the households problem

2. taking prices as given, {n̂, k̂I} solve Firm I’s problem and {k̂II0 , x̂} solve Firm II’s

problem

3. markets clear, i.e.

ĉt(s
t) + x̂t(s

t) = At(s
t)F (k̂It (s

t), n̂t(s
t)) for all st for all t (4.10)

ˆ̀(st) = n̂(st) for all st for all t (4.11)

k̂IIt (st−1) = k̂It (s
t) for all st for all t (4.12)

k̂II0 = k0 (4.13)

4.2 Sequential Equilibrium

Idea: There are markets at every period t after each possible history st.
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—B Markets are complete.

—B There is a full set of Arrow securities that “span” the uncertainty next period.

—B An Arrow security for state (st+1, s
t) in period t pays exactly one unit of the consumption

good tomorrow (i.e. period t+ 1) if state st+1 occurs.

—B It is sufficient to have #S such Arrow securities to have dynamically complete markets.

Prices

—B qt(st+1|st): price of the Arrow security

—B at+1(st+1|st): number of securities held by the household

—B {wt(st), rt(st)}∞t=0: sequence of factor prices

4.2.1 Households

max
{ct,`t,at+1}∞t=0

∞∑
t=0

∑
st

βtπt(s
t)u(ct(s

t), 1− `t(st)) (4.14)

subject to

c(st) +
∑
st+1|st

qt(st+1|st)at+1(st+1|st) ≤ wt(s
t)`t(s

t) + at(s
t)

a0 given

at+1(st+1|st) ≥ B(st) s.th. B < 0 large enough (4.15)

ct ≥ 0, `t ∈ [0, 1]

Question:

Why do we need a borrowing limit?

Avoid “Ponzi”-schemes.
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Suppose we have no borrowing limit. Then:

—B take any state contingent plan of the household {c, `, a} at prices q and w

—B define a new sequence of consumption {c̃t(st)}∞t=0 by c̃0 = c0 + ε and c̃t(s
t) = ct(s

t)

—B the consumer can afford c̃ and is better off

Why? Borrow more and roll over the principal and interest forever.

Idea: Construct the new sequence of borrowing levels:

c̃0 +
∑
s1

ã1(s1|s0)q0(s1|s0) = c0 +
∑
s1

a1(s1|s0)q0(s1|s0) (4.16)

Hence, ε =
∑

s1
[a1(s1|s0)− ã1(s1|s0)] q0(s1|s0) > 0.

Roll over this debt along a specific path (s̃1, s̃2, . . . ). From the sequential budget constraints

one obtains

ã1(s̃1|s0) = a1(s̃1|s0)− ε 1
q0(s̃1|s0)

ã2(s̃2|s̃1) = a2(s̃2|s̃1)− ε 1
q0(s̃1|s0)q1(s̃2|s̃1)

...

ãt+1(s̃t+1|s̃t) = at+1(s̃t+1|s̃t)− ε 1
Πtτ=0q0(s̃τ+1|s̃τ )

...

For any sequence of state-contingent prices that could form an equilibrium, it must be the

case that 0 < qt(st+1|st) < 1 (why? positive interest rates, see below.)

It cannot be the case that the initial sequence of asset holdings at+1 is unbounded along the

path (why? transversality condition, see below).

Hence, limt→∞ ãt+1 = −∞, i.e. debt along this path grows unboundedly large.

—B But: For any B < 0 and for any ε > 0, we will eventually violate the borrowing

constraint. A borrowing limit rules out such behavior.
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Conclusion: It is necessary to impose a borrowing limit in order to make the problem eco-

nomically interesing. However, one can always impose a small enough limit B < 0 such that

the constraint is never binding given any price processes (q, r, w). Then, markets are still

complete and the problem can be solved, “as-if” we neglected the constraint.

Standard FONC:1

uc(s
t)

u`(st)
=

1

wt(st)
(4.18)

qt+1(st+1|st) = β
uc(s

t+1)

uc(st)
πt(st+1|st) (4.19)

lim
t→∞

E0[βtuc(s
t)at(st+1|st)] = 0. (4.20)

The last condition is a transversality condition (TVC) that expresses the fact that the

household does not leave any wealth in net present value terms at infinity. It is a necessary

condition for a solution of the problem.2

4.2.2 Firms

Two types: firms that produce output and firms that produce new capital

1The intertemporal Euler equations give an expression for the risk-free interest rate, here corresponding

to holding a portfolio of assets that pays out one unit of consumption for sure next period. This rate is given

by
1

1 + r
=

∑
st+1|st

q(st+1|st) = β
E [uc(st+1)|st]

uc(st)
. (4.17)

2To my knowledge there is still a debate whether the TVC is a necessary condition for a standard concave

problem. It is, however, a sufficient condition for a solution. Also note that people often confuse a TVC

with a No-Ponzi game condition and vice versa. The former is a condition on optimality restricting the

accumulation of wealth at infinity, while the latter is a constraint that limits the accumulation of debt.
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Firm I – Final good producers:

max
{kIt (st),nt(st)}

ct(s
t) + xt(s

t)− rt(st)kIt (st)− wt(st)nt(st) (4.21)

subject to

ct(s
t) + xt(s

t) ≤ At(s
t)F (kIt (s

t), nt(s
t))

kIt ≥ 0, nt ≥ 0

Zero-Profit conditions:

At(s
t)Fk(s

t) = rt(s
t) (4.22)

At(s
t)Fn(st) = wt(s

t) (4.23)

Firm II – Capital good producers:

—B This firm transforms output into capital and vice versa at the rate 1-1.

—B It decides to buy old capital and transform output into new capital at the end of the

period, rent it out next period and liquidate it again after production.

—B The (total) pay-offs from capital are equal to

[
rt(s

t+1) + (1− δ)
]
kIIt+1(st). (4.24)

—B To finance the purchase of capital/output the firm issues one-period state-contingent

debt to households against these pay-offs.

—B This yields the following problem in state st

max
kIIt+1(st)

kIIt+1(st)

−1 +
∑
st+1|st

qt+1(st+1|st)
[
rt+1(st+1) + (1− δ)

] . (4.25)

—B Zero-profit condition:

1 =
∑
st+1|st

qt+1(st+1|st)
[
rt+1(st+1) + (1− δ)

]
(4.26)
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4.2.3 Definition

Definition 4.2.1. A Sequential Markets Equilibrium is a sequence of prices {q̂t(st+1, s
t), ŵt(s

t), r̂t(s
t)}∞t=0

and allocations {ĉt(st), ˆ̀(st), {â(st+1|st)}st+1 , n̂t(s
t), k̂It (s

t), k̂IIt+1(st)}∞t=0 such that

1. taking prices as given, {ĉt(st), ˆ̀
t(s

t), {â(st+1|st)}st+1}∞t=0 solve the households problem

2. taking prices as given, {n̂t(st), k̂It (st)}∞t=0 solve Firm I’s problem and {k̂IIt+1(st)}∞t=0 solve

Firm II’s problem

3. markets clear, i.e.

ĉt(s
t) + k̂IIt+1(st) = At(s

t)F (k̂It (s
t), n̂t(s

t)) + (1− δ)k̂IIt (st−1) ∀st, t (4.27)

ˆ̀(st) = n̂(st) ∀st, t (4.28)

k̂IIt (st−1) = k̂It (s
t) ∀st, t (4.29)[

rt(s
t+1) + (1− δ)

]
kIIt+1(st) = at+1(st+1|st) ∀st, t (4.30)

[r0 + (1− δ)] kII0 = a0 (4.31)

Remark: Note that the initial wealth distribution for households is pinned down by the

returns on using the initial capital stock in the first period. The idea is that type II firms

have bought it from households in the past and pay them with the receipts. I took account of

this as an additional initial condition where the household wealth is equal to the one period

present value of the capital stock.3 Note that in general, however, the sequential equilibrium

is defined for an arbitrary initial wealth distribution for households.

4.3 Equivalence of AD and SM Equilibrium

See Proof by TA.

Idea:

—B Given an allocation, one can construct prices using the FONC and zero-profit conditions.

3Alternatively, households could have just owned capital making investment decisions directly.
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—B Show that solutions of the household’s problems coincide for non-binding borrowing

constraints.

—B Given the constructed prices, one checks that the feasible sets of consumers and firms

are identical. This involves showing that wealth levels (or that the net present values of

future income, respectively) are finite given equilibrium prices. Then one can always find

non-binding borrowing constraints.

Remark: In the remainder of the course such a general equivalence does not usually hold,

as Arrow-Debreu markets describe an economy without distortions such as borrowing limits

that are binding or missing markets.

4.4 Recursive Equilibrium

Idea: This concept is closely related to SM equilibrium. Everything is expressed in form of

functionals that map from the state space into equilibrium values.

Assumption: Uncertainty is described by a (first-order) finite-state Markov process.

—B Markov process: A stochastic process {Xt}∞t=0 is (first-order) Markov if for all k ≥ 1

and all t,

P{Xt+1|Xt, . . . , Xt−k} = P{Xt+1|Xt} (4.32)

—B It follows that πt(s
t) = π(st|st−1)π(st−1|st−2) · · · π(s1|s0)π(s0)

—B Example: At(s
t) = z(st)A for all t, where z is a Markov process

State space

—B aggregate (i.e. economy-wide) state variables

—B X = (K, z)

—B K: aggregate capital stock
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—B z: productivity

Prices

—B functions of the aggregate state

—B (r(X), w(X), q(X ′|X))

4.4.1 Households

—B additional, individual state variable: a – wealth level

—B restrict domain for a (and, hence, a′(a,X)) to capture a No-Ponzi-game condition

—B belief about law of motion on aggregate states induces conditional expectation Ẽ

—B Ẽ is composed of exogenous stochastic process on z and a forecast about K ′ = G(X)

J(a,X) = max
c,l,a′

u(c, 1− `) + βẼ [J(a′(X ′), X ′)] (4.33)

subject to

c+
∑
X′

q(X ′|X)a′(X ′) ≤ w(X)`+ a

c ≥ 0, ` ∈ [0, 1], a′ ∈ A

FONC:

uc(a,X)

ul(a,X)
=

1

w(X)
for all (a,X) (4.34)

β
∂Ẽ [J(a′(X ′), X ′)]

∂a′(X ′)
= µ(X)q(X ′|X), (4.35)

(4.36)

where µ(X) is the Lagrange-multiplier on the resource constraint given state X.

Remark: If J is differentiable, use the Envelope Theorem to obtain ∂J(a,X)
∂a

= µ(X) =

−uc(a,X). Also, note that markets are complete here as long as people’s beliefs are such
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that there is a unique value K ′ for any given current aggregate state (K, z). Then only the

exogenous shock matters for uncertainty next period. Furthermore, if people believe the ag-

gregate productivity shock z evolves according to some Markov process π̃, the intertemporal

Euler equation can be rewritten as

β
uc(a

′(a,X);X ′)

uc(a,X)
π̃(X ′, X) = q(X ′|X). (4.37)

4.4.2 Firms

—B identical to one-period problems in the SM equilibrium

—B zero-profit conditions

r(X) = zAFk(k, n) (4.38)

w(X) = zAFn(k, n) (4.39)

1 =
∑

X′ q(X
′|X) [r(X ′) + (1− δ)] (4.40)

4.4.3 Definition

Definition 4.4.1. A RE is price functions (r∗(X), w∗(X), q∗(X ′|X)), a value function J∗,

decision rules (c∗(a,X), `∗(a,X), a′∗(a,X;X ′)), a law of motion for K ′, G(X), such that

1. given price functions and the law of motion G, the decision rules (c∗(a,X), `∗(a,X), a′∗(a,X;X ′))

and value function J∗ solve the functional equation of the household

2. the zero-profit conditions hold for every X

3. (consistency) k = K, a = [r(X) + (1− δ)]K and `∗(a,X) = n(X)

4. the law of motion G is induced by the firm’s zero-profit conditions and the household’s

decision rules, i.e. K ′ = G(X), where

G(X) = zAF (K, `∗([r(X) + (1− δ)]K,X)) + (1− δ)K − c∗([r(X) + (1− δ)]K,X)

(4.41)
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and people’s belief are given by π̃ = π .

Remark: Solving for a RE – as with any other equilibrium concept – is a fixed point problem.

—B decision makers forecast prices and law of motions

—B taking these objects as given they make optimal decisions

—B decisions must lead to prices and law of motions that are consistent with forecasts

—B need two iterations in order to solve for an equilibrium

—B one over the value functions and one over the prices/law of motion

Hence: Planning problem is much easier to solve. One can then invoke the Second Welfare

Theorem to decentralize the economy and find prices directly from the FONC and optimal

allocations.

4.5 Literature

Sargent and Ljungvist, Chapter 8-12

Cooley and Prescott, in: Cooley (Ch.1)
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Chapter 5

Welfare Theorems

Main Set-up

—B commodity space is infinite-dimensional

—B need to define a price system on this commodity space

—B price system assigns a value to each element in the commodity space

—B value better be finite

5.1 Abstract Definition of an Economy

—B people i ∈ I

—B technologies j ∈ J

—B list of commodities: vector

—B commodity space: real-valued normed vector space (S, ‖ · ‖S)

Households

—B consumption set Xi ⊂ S
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—B preferences: ui : Xi −→ IR

—B endowment: ωi ∈ Xi

Technologies

—B production set: Yj ⊂ S

5.2 Prices

5.2.1 Dual Spaces

Definition 5.2.1. A price system is a real-valued continuous linear functional φ : S −→ IR.

—B φ assigns a real-value to each element in the commodity space

—B φ is a linear functional if it satisfies

φ(αx+ βy) = αφ(x) + βφ(y) (5.1)

for all x, y ∈ S and all α, β ∈ IR.

—B φ is continuous if ‖xn − x‖S → 0 implies |φ(xn)− φ(x)| → 0.

—B φ is continuous on S, if it is continuous at some x ∈ S.

—B φ is continuous if and only if φ is bounded; i.e., if there exists M ∈ IR such that

|φ(x)| ≤M‖x‖S for all x ∈ S.

—B The space S∗ is the space of all continuous linear functionals on S. It is called the dual

of S.

—B It is a complete normed vector space when one applies the norm given by

‖φ‖d = inf{M ∈ R+ : |φ(x)| ≤M‖x‖S, for all x ∈ S} = sup
‖x‖S≤1

|φ(x)|

for every bounded linear functional φ on S.
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5.2.2 Examples

—B `1 is the space of all sequences that are bounded in the norm ‖x‖1 =
∑∞

i=1 |xi|, i.e the

series
∑∞

i=1 |xi| converges.

—B `∞ is the space of all sequences that are bounded in the sup-norm.

—B `∞ is the dual of `1.

—B The converse is not true. `1 is only a subset of the dual of `∞.

—B `1 is the dual of c0 ⊂ `∞, the space of all sequences that converge to 0.

—B More generally, for any p ∈ (1,∞), the space `p consists of all sequences that are

bounded in the norm

‖x‖p =

(
∞∑
i=1

|xi|p
) 1

p

.

Furthermore, the dual of this space is given by `q, where 1/p+ 1/q = 1.

—B Finally, if one has a general measurable space, one can define the space of all measurable

functions on this space that are bounded with respect to a similar norm. These are called

the Lp spaces.

5.2.3 Why do we care?

—B Total consumption and endowment consists of an infinite sequence of consumption or

endowment levels.

—B In order to define a budget set, we have to assign a value to any such sequence.

—B Prices need to define the value of any commodity in the economy. This value should be

finite. Any element of the dual of the commodity space gives us a price system.

—B An inner-product representation of prices is useful, but not necessary.

—B Let `∞ be the commodity space. Any price system in `1 gives an inner product repre-
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sentation, i.e. for {ct}∞t=0 ∈ `∞ and {pt}∞t=0 ∈ `1 we have

∞∑
t=0

ptct <∞. (5.2)

—B More generally, as `q is the dual of `p, we have that any element of y ∈ `q defines a

continuous linear functional on `p with the inner product representation

φ(x) = y · x =
∞∑
i=1

yixi.

—B An analogue exists for Lp spaces.

5.3 Definitions

Allocation: ({xi}i∈I , {yj}j∈J)

Definition 5.3.1. An Allocation is feasible if xi ∈ Xi and yj ∈ Yj such that∑
i∈I

xi −
∑
j∈J

yj = 0. (5.3)

Definition 5.3.2. A Pareto-optimal Allocation is an allocation ({xi}i∈I , {yj}j∈J) that is

feasible and for which there does not exist another feasible allocation (x̃, ỹ) such that (i)

ui(x̃i) ≥ ui(xi) for all i and (ii) ui(x̃i) > ui(xi) for some i.

Definition 5.3.3. A Competitive Equilibrium is an allocation (x̂, ŷ) and a continuous linear

functional φ̂ : S → IR such that

(i) (x̂, ŷ) is feasible

(ii) for all i, x ∈ Xi and φ(x) ≤ φ(x̂) ⇒ ui(x) ≤ ui(x̂)

(iii) for all j, y ∈ Yj ⇒ φ(y) ≤ φ(ŷ).
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—B The second condition is utility maximization.

—B The third condition is profit-maximization.

—B We do neither specify endowments nor how profits are distributed across consumers.

This is not important for deriving the Welfare Theorems.

5.4 First Welfare Theorem

Assumption: Non-satiation

—B For all i and x ∈ Xi, there exists xn → x, where xn ∈ Xi for all n such that ui(xn) >

ui(x) for all n.

Theorem 5.4.1. Suppose preferences are non-satiated. If (x̂, ŷ, φ) is a competitive equilib-

rium, then the allocation (x̂, ŷ) is Pareto-optimal.

Proof. We first establish a preliminary result. This result shows that -- by using

local non-satiation -- we can strengthen the optimality condition for consumer’s

in the definition of competitive equilibrium.

Let (x̂, ŷ, φ̂) be a competitive equilibrium. We first show that ui(xi) = ui(x̂i) implies φ(xi) ≥

φ(x̂i).

Suppose to the contrary that for some i, ui(xi) = ui(x̂i) and φ(xi) < φ(x̂i). By non-satiation,

there exists xn → xi such that ui(xn) > ui(xi) = ui(x̂i) for all n. Since φ is continuous,

for n large enough, φ(xn) < φ(x̂i). Hence, x̂i was not optimal for i and (x̂, ŷ, φ) is not an

equilibrium. A contradiction.

Next, we show that if a CE allocation is not Pareto-optimal, there must be an

allocation that is feasible at the equilibrium price and makes someone (here some

‘‘firm’’) better off.

Suppose that (x̂, ŷ) is not Pareto-optimal. Then there exists another feasible allocation (x̃, ỹ)

such that (i) ui(x̃i) ≥ ui(x̂i) for all i and (ii) ui(x̃i) > ui(x̂i) for some i.
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Since (x̃, ỹ) is feasible and (x̂, ŷ, φ) is an equilibrium, we have that ui(x̃i) > ui(x̂i) implies

φ(x̃i) > φ(x̂i) and that ui(xi) = ui(x̂i) implies φ(xi) ≥ φ(x̂i). Hence, by linearity of φ

φ(
∑
i∈I

x̃i) =
∑
i∈I

φ(x̃i) >
∑
i∈I

φ(x̂i) = φ(
∑
i∈I

x̂i). (5.4)

Since both (x̃, ỹ) and (x̂, ŷ) are feasible, we have by linearity of φ∑
j∈J

φ(ỹj) = φ(
∑
j∈J

ỹj) = φ(
∑
i∈I

x̃i) > φ(
∑
i∈I

x̂i) = φ(
∑
j∈J

ŷj) =
∑
j∈J

φ(ŷj). (5.5)

Hence, ŷj is not optimal for some j ∈ J . A contradiction.

Remark: The FWThm is very strong. It only requires a very weak assumption on preferences.

5.5 Second Welfare Theorem

Assumptions:

(i) Xi for all i ∈ I and Y =
∑

j∈J Yj are convex.

(ii) The utility function representing preferences is strictly concave and continuous.1

(iii) The set Y =
∑

j∈J Yj has an interior point.

In addition, the next theorem uses a very weak non-satiation assumption that applies only

to one consumer at his particular Pareto-optimal consumption.

Theorem 5.5.1. Suppose assumptions (i)-(iii) are satisfied. Let (x̂, ŷ) be a Pareto-optimal

allocation. Assume that for some h ∈ I there is x̃h ∈ Xh such that uh(x̃h) > uh(x̂h). Then

there exists a continuous linear functional φ : S → IR, φ 6= 0, such that

1. for all i ∈ I, xi ∈ Xi and ui(xi) ≥ ui(x̂i)⇒ φ(xi) ≥ φ(x̂i)

2. for all j ∈ J , y ∈ Yj ⇒ φ(y) ≤ φ(ŷ).

1A weaker condition is that preferences are convex and continuous. This is the assumption being used in

the proof of Debreu (1959).

48



The proof is an application of the Hahn-Banach Theorem:

Let S be a normed vector space. Let A,B ⊂ S be convex sets. Assume that either intB 6= ∅

or S is finite-dimensional, and that A ∩ intB = ∅. Then there exists a continuous linear

functional φ 6= 0 and a constant c ∈ IR such that

φ(x) ≤ c ≤ φ(y) (5.6)

for all x ∈ A and y ∈ B.

Proof. We first construct the sum of the upper-contour sets of all consumers at

their Pareto-optimal consumption. Points in these sets reflect the points that

make consumers better off relative to their Pareto-optimal allocation.

Let (x̂, ŷ) be a Pareto-optimal allocation. Define

Ai = {x ∈ Xi|ui(x) ≥ ui(x̂i)}

for all i ∈ I. Let A =
∑

i∈I Ai. Then, the assumptions above ensure that A and Y are

convex and that Y has an interior point.

We then want to apply the Hahn-Banach Theorem with respect to these two sets.

This is done by using local-nonsatiation for one consumer and deriving a contradiction

with the original allocation being Pareto-optimal.

We are left to show that intY ∩A = ∅. Suppose not. Then there exists y ∈ A∩ intY . Hence,

there exists x such that xi ∈ Ai for all i and y =
∑

i∈I xi. We have

ui(xi) ≥ ui(x̂) (5.7)

for all i.

Define xh(λ) = λx̃h + (1−λ)xh for λ ∈ (0, 1). Then, by convexity of Xh, xh(λ) ∈ Xh and by

concavity of uh, uh(xh(λ)) > uh(x̂i).

Define y(λ) =
∑

i 6=h xi + xh(λ). Since y ∈ intY , there exists ε > 0 sufficiently small such

that for λ < ε, y(λ) ∈ Y . Then, the allocation ((x1, . . . , xh(λ), . . . , xI), y(λ)) is feasible and
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satisfies

ui(xi) ≥ ui(x̂i) for all i 6= h and uh(xh(λ)) > uh(x̂h). (5.8)

But then (x̂, ŷ) was not Pareto optimal. A contradiction.

We then have a pricing functional that separates the two sets. By feasibility,

the Pareto-optimal allocation must be on a boundary of both sets. The hyperplane

defined by the function intersects the two sets exactly at a point common to the

boundary of both sets.

Hence, by the Hahn-Banach Theorem, there exists c ∈ IR and a continuous linear functional

φ such that φ(y) ≤ c ≤ φ(x) for all y ∈ Y and x ∈ A.

Then, as (x̂, ŷ) is feasible, we have ŷ ∈ A and, thus, φ(y) ≤ φ(ŷ). Furthermore, for any

x ∈ A, ui(xi) ≥ u(x̂) implies φ(x) ≥ φ(x̂), as
∑

i∈I x̂i = ŷ ∈ Y .

This proves only the existence of a quasi-equilibrium (where the household’s choice minimizes

costs or expenditure). We have not shown, however, that x̂ is utility maximizing.

Theorem 5.5.2. Suppose in addition that for each i there exists x̃i ∈ Xi such that φ(x̃i) <

φ(x̂i). Then, (x̂, ŷ, φ) is a competitive equilibrium.

Proof. Let xi ∈ Xi such that φ(xi) ≤ φ(x̂). Define xi(λ) = λx̃i + (1− λ)xi for all λ ∈ (0, 1).

As Xi is convex and φ is linear, we have that xi(λ) ∈ Xi and that φ(xi(λ)) < φ(x̂) for all

λ ∈ (0, 1).

By the contrapositive of the previous theorem, we have that ui(xi(λ)) < ui(x̂i). Since ui is

continuous, limλ→0 ui(xi(λ)) = ui(xi) ≤ ui(x̂i) which completes the proof.

Remark: The SWThm requires very strong assumptions that for many models we discuss

later are not fulfilled.
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5.6 Some Further Comments

—B production or consumption sets can be non-convex (see also incomplete markets)

—B continuity of ui depends on ‖ · ‖S

—B non-empty interior of the production set also depends on the norm of S

—B chosing the norm is also important for having an inner-product representation of prices

5.7 Literature

Stokey, Lucas with Prescott, Chapter 15

Debreu, Theory of Value

Mas-Colell, Whinston and Green, Chapter 16
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Chapter 6

Macroeconomics and Asset Pricing –

A Primer

We develop now a basic theory of how to price assets. There are three different pricing

methods – successively assuming more structure:

• arbitrage-free pricing

• consumption-based pricing

• general equilibrium pricing.

We will only talk mostly about the first two and how they are related. These provide most

concepts used in the quantitative macro/finance literature on asset pricing. The last one

simply adds market clearing conditions that are either derived from the dividend process or

from the production side of the economy.

6.1 Set-up

• t = 0, . . . , T (where T can mostly interpreted as ∞)

• uncertainty is described by an event tree (or a filtration)
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• probability measure π(st) is well defined

• J long-lived assets with dividend process x(st)

• assets can be continuously traded ex-dividend

• preferences are described by expected utility

• utility is separable across time and states

6.2 Elementary Concepts

Let {a(st)}∞t=0 be a portfolio strategy of holding the J assets over time. Its payoff is given by

z(a, p)(st) =
(
p(st) + x(st)

)
a(st−1)− p(st)a(st). (6.1)

where st is a successor event of st−1 – or st ⊂ st−1.

The asset span M(p) is defined by

M(p) =
{
z| there exists a(st) such that z(st) = z(a, p)(st) for all st, t

}
. (6.2)

In other words, the asset span is all payoffs over time that can be realized with a particular

portfolio strategy. For finitely many events over the horizon, we have that M(p) ⊂ IRk

where k is the total number of events.

Remarks:

1. If M(p) = IRk. markets are complete; otherwise they are incomplete.

2. One does not need the same number of assets as events to have complete markets. It

is sufficient to have the same number of assets (with linearly independent payoffs) as

the number of successors (or branches). An example is a long-lived bond if there is no

uncertainty that can be retraded at any point in time.
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3. In continuous time, there is a result that one needs only a small number of assets to

have complete markets. The idea is that the continuity of events is matched by trading

a few assets continuously. Hence, the continuity of events is matched by the continuity

of prices and trading strategies.

A payoff pricing functional is a linear functional

q :M(p)→ IR (6.3)

such that q(z) = p0a0, where a generates the payoff z.

A valuation functional is a linear functional

Q : IRk → IR (6.4)

such that Q(z) = q(z) for all z ∈M(p).

6.3 Arbitrage-Free Asset Pricing

An arbitrage is given by a portfolio strategy a such that p0a0 ≤ 0 and z(a, p) ≥ 0 with at

least one strict inequality.

Theorem 6.3.1. The payoff pricing functional is strictly positive if and only if there is no

arbitrage.

Remarks:

1. If the utility functions are strictly increasing, then there is no arbitrage in equilibrium.

Hence, the equilibrium payoff pricing functional excludes arbitrage and is strictly pos-

itive.

2. The valuation functional is unique if and only if securities markets are dynamically

complete.
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6.4 Portfolio Choice Problem

We consider the following maximization problem:

max
c,a

E

[
∞∑
t=0

βtu(ct)

]
(6.5)

subject to (6.6)

c(st) = y(st)−
∑
j

pj(s
t)aj(s

t) +
∑
j

(pj(s
t) + xj(s

t))aj(s
t−1) (6.7)

c(st) ≥ 0 (6.8)

lim
t→∞

pj(s
t)aj(s

t) ≥ 0 (6.9)

where st ⊂ st−1.

We have the following first-order conditons:

βtπ(st)u′(c(st)) = λ(st) (6.10)

−pj(st)λ(st) +
∑

st+1⊂st
λ(st+1)(pj(s

t+1 + xj(s
t+1)) = 0 for all j (6.11)

lim
k→∞

Et
[
βkλ(st+k|st)aj(st+k)

]
= 0 for all j. (6.12)

This yields for the condition,

pj(s
t)u′(c(st)) = Et [(pj,t+1 + xj,t+1)βu′(ct+1)] (6.13)

for the payoff process of asset or portfolio j or equivalently,

Et [pj,t+1 + xj,t+1]Et

[
β
u′(ct+1)

u′(ct)

]
+ Covt

[
pj,t+1 + xj,t+1, β

u′(ct+1)

u′(ct)

]
= pj,t. (6.14)

Written with returns we have

u′(c(st)) = Et [rj,t+1βu
′(ct+1)] . (6.15)

and if there is a risk-free asset – i.e., an asset that has the same one-period return across

states in t+ 1 –

r∗j,t+1 =
u′(c(st))

Et[βu′(ct+1)]
. (6.16)
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We obtained again that,

r∗j,t+1 − rj,t+1

r∗j,t+1

=
Cov(rj,t+1, u

′(ct+1)

u′(ct)
, (6.17)

which defines the one-period risk premium for asset or portfolio j.

The covariance term thus expresses a measure of how risk is assessed by the consumer. Hence,

every asset can be priced according to a risk-free payoff and an additional risk premium that

expresses how well the asset insures the consumer against consumption risk.

6.5 Fundamental Asset Pricing Formula

Question:

How do we price an arbitrary asset that has a payoff given by {x(st)}∞t=0?

We will look at different concepts:

• event prices

• pricing kernel

• risk-neutral probabilities

6.5.1 Event Prices

We first define event prices through the payoff pricing functional q for complete markets.

Consider an Arrow security that pays one unit of the consumption good in event st. The

event price q(st) is the price of this security. Then, we have for any payoff process

q(z) =
∑
st

q(st)z(st) = qz. (6.18)
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More generally, for any given asset structure where markets are complete, event prices are

defined by the system of equations

q(st)pj(s
t) =

∑
st+1⊂st

q(st+1)(pj(s
t+1) + xj(s

t+1)) for all j (6.19)

where we must have q(st) > 0, if there is no arbitrage. Of course event prices are linked to

the intertemporal marginal rates of substitution in any model where people optimize over

asset holdings.

Suppose now asset markets are incomplete. The above system of equations that defines event

prices allows for multiple solutions as there are more events than assets. These event prices

define a valuation functional, i.e. q(st) = Q(st). Hence, we have that Q(z) =
∑

st q(s
t)z(st).

Of course, the valuation functional is not unique anymore.

How do we value any new asset z̃ that increases the asset span, so that prices are arbitrage

free? The value Q(z̃) needs to be in the interval [q`(z̃), qu(z̃)], where1

qu = min
a
{p0a0|z(a, p) ≥ z̃} (6.20)

q` = min
a
{p0a0|z(a, p) ≤ z̃}. (6.21)

6.5.2 Pricing Kernel

We start with a powerful mathematical result.

Riesz Representation Theorem:

Let X be a Hilbert space. If φ : X → IR is a continuous linear functional, then there exists

a unique y ∈ X such that

φ(x) = E[yx]

for all x ∈ X.

1Alternatively, we could use a new set of event prices to derive these bounds.
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For complete markets, the payoff pricing functional is a continuous linear functional on

the entire payoff space. Hence, no arbitrage and a positive payoff pricing functional are

equivalent to the existence of a so-called pricing kernel which is defined by Mt such that

q(z) =
∞∑
t=0

E[Mtzt]. (6.22)

for all zt. Alternatively, Mt is called stochastic discount factor or state-price deflator. This

is the fundamental asset pricing equation in economics.

One can show that

Mtpj,t = Et[Mt+1(pj,t+1 + xj,t+1)] (6.23)

for all j and t. Hence, the pricing kernel is a stochastic process that is closely related to

event prices and, hence, the intertemporal marginal rates of substitutions.

This implies immediately that as long as there exists a risk-free asset that

r∗t+1 =
Mt

Et[Mt+1]
(6.24)

and that in dynamically complete markets we have that

M(st) =
q(st)

π(st)
, (6.25)

so that the pricing kernel is just the event prices rescaled by event prices.2

For incomplete markets, exactly the same relationships hold – except for the fact that now

the pricing kernel is not unique anymore. The idea is that the asset span M(p) is a closed

linear subspace of the underlying payoff space. One can then decompose the pricing kernel in

one component that lies in the asset spanM(p) and in another one that lies in the orthogonal

complement of M(p).

2For the special case of risk-neutrality, we obtain that M(st) = βt, so that the price of any asset is simply

its discounted expected net present value of dividends, q0 =
∑∞

t=0 β
tE[xt].
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6.5.3 Some Final Remarks

Martingale Theories of Asset Prices

This theory does not predict that asset prices follow a martingale. To obtain a martingale,

we would need that the IMRS is constant and that there is no covariance between this term

and payoffs.

However a related concept “risk neutral probabilities” can be used to obtain a martingale

theory of asset prices. These probabilities are adjusted by the relative weight of the IMRS

across states. Under these probabilities, the discounted gains of an asset follows a martingale.

Hence, it looks like as if we price assets according to risk neutral agents, but the new

probabilities subsume the price of risk.

Ruling out Bubbles

So far, we have ruled out any problems “at infinity” when we priced assets. In general, it

need not be the case that the pricing or valuation functionals map into IR or converge to

infinite series of the event prices times the payoffs of a portfolio strategy. However, if we use

equilibrium pricing, it is very hard to obtain bubbles in equilibrium. Consider the Lucas’

Asset pricing model. We need to have

pt = βEt

[
u′(yt+1)

u′(yt)
(yt+1 + pt+1)

]
(6.26)

Iterating forward and using the law of iterated expectations, we get that

pt = Et

[
∞∑
k=1

βk
u′(yt+k)

u′(yt)
yt+k

]
+ Et

[
lim
k→∞

βku′(yt+k)pt+k

]
. (6.27)

The last term must be zero in equilibrium, since it would violate households making optimal

decisions.

6.6 Literature

Le Roy and Werner (2004) – Principles of Financial Economics
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Duffie (2001)

Santos and Woodford (2000) – Econometrica
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Part II

Business Cycle Analysis
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Chapter 7

Real Business Cycles

7.1 The Canonical Model

The RBC model forms the basis for any Dynamic Stochastic General Equilibrium Model.

A representative household solves the following problem

max
ct,kt,nt

E0

[
∞∑
t=0

βt
(
c1−γ
t

1− γ
+ θ

(1− nt)1−η

1− η

)]
(7.1)

subject to

ct + xt ≤ wtnt + rtkt for all t and zt (7.2)

kt+1 = xt + (1− δ)kt (7.3)

k0 and z0 given (7.4)

The production function is Cobb-Douglas and given by

ztAtk
α
t n

1−α
t (7.5)

where

ln zt = ρ ln zt−1 + εt (7.6)
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with ρ ∈ (0, 1) and εt ∼ N (0, σ).

At the core of the model is the neo-classical growth model enriched by a labour-leisure choice.

The only uncertainty in the model arises from the technology shock zt which is log-normally

distributed.

Hence, any fluctuations around the steady state arise from this source; in other words,

technology shocks are the sole driver of business cycles.

7.2 Dynamics

The first-order conditions of the firm are given by

ztα

(
kt
nt

)α−1

= rt (7.7)

zt(1− α)

(
kt
nt

)α
= wt (7.8)

The households first-order conditions are(
c−γt

θ(1− nt)−η

)
=

1

w(zt)
for all t and zt (7.9)

1 = E

[
β

(
ct
ct+1

)γ
(rt+1 + (1− δ))

∣∣∣zt] for all t and zt (7.10)

Market clearing and the process of the technology shock complete the model

ct + kt+1 = ztAk
α
t n

1−α
t + (1− δ)kt for all t and zt (7.11)

ln zt = ρ ln zt−1 + εt (7.12)

The (deterministic) steady state is given by(
c̄−γ

θ(1− n̄)−η

)
=

1

A(1− α)n̄−α

1 = β
(
Aαkα−1

t n̄1−α + (1− δ)
)

c̄+ k̄ = z̄F (k̄, n̄) + (1− δ)k̄
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We have three equations in three unknowns that we can solve.

The dynamics of the system are described by a non-linear stochastic second-order difference

equation since

• ct depends on kt and kt+1

• ct+1 depends on kt+1 and kt

• the expectation of zt+1 matters for investment.

7.3 Consumption and Leisure Choice

7.3.1 Consumption

Using 1 = β (r̄ + (1− δ)), we obtain

1 = Et

[(
ct
ct+1

)γ (
rt+1 + (1− δ)
r̄ + (1− δ)

)]
(7.13)

Log-linearizing, we have approximately

Et

[
ln

(
ct+1

ct

)]
≈ 1

γ
(Et[rt+1]− r̄) . (7.14)

The savings/investment choice (and, thus, consumption growth) depends on the expected

changes in the return of capital and the willingness to substitute intertemporally.

The response of current consumption depends on the income and substitution effect (or σ).

7.3.2 Leisure

We have from the first-order condition that

θ(1− nt)−η = λ(zt)w(zt) (7.15)
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where λ(zt) is the Lagrange multiplier on the budget constraint in state zt.

Log-linearizing, we obtain for this equation1

θ(1− n̄)−η−1n̄n̂t = λ̄w̄λ(zt) + λ̄w̄ŵ(zt) (7.16)

where n̄ and n̂ are steady state values and (log-)deviations from steady state.

Hence, using the steady state relationship, we have

n̂t =
1

η

1− n̄
n̄

(λ(zt) + ŵ(zt)) (7.17)

This shows that both n̄ and η matter a lot for how the labour-leisure choice reacts to changes

in wages. For low η and n̄ one obtains unrealistically large responses of labour supply to

wage changes.

7.4 The Way Forward

To solve the model, one usually follows the following steps.

1. Find values for parameters, either through calibration or estimation.

2. Log-linearize the economy around the steady state.

3. Check whether the economy is stable.

4. Solve the “state-space” representation of the log-linearized model.

5. Compute impulse response functions and second moments.

6. Compare the results to actual data, simulated or estimated data.

For most (or all) of these steps, DYNARE is your friend.

1Try it!
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7.5 Appendix – Log-linearization

Define the (approximate) deviation from steady state as

x̂t = log
(xt
x̄

)
= log

(
xt − x̄
x̄

+ 1

)
≈ xt − x̄

x̄
. (7.18)

We then approximate any equation yt = f(xt) as a linear equation in terms of percentage

deviations from steady state values

ȳeŷt = f(x̄ex̂t) (7.19)

A first-order Taylor expansion around ŷt = 0 and x̂t = 0 yields

ȳe0 + ȳe0(ŷt − 0) ≈ f(x̄e0) + f ′(x̄e0)x̄e0(x̂t − 0) (7.20)

which is

ȳ + ȳŷt ≈ f(x̄) + f ′(x̄)x̄x̂t (7.21)

and since ȳ = f(x̄)

ȳŷt = f ′(x̄)x̄x̂t. (7.22)

A general formula is given by

yt = f(xt, zt) =⇒ ȳŷt = fx(x̄, z̄)x̄x̂t + fz(x̄, z̄)z̄ẑt (7.23)

Hence, we obtain the following “rules” for log-linearizing equations:

xt+1 = f(xt) =⇒ x̂t+1 = f ′(x̄)x̂t (7.24)

yt = xtzt =⇒ ŷt = x̂t + ẑt (7.25)

yt =
xt
zt

=⇒ ŷt = x̂t − ẑt (7.26)

yt = xt + zt =⇒ ȳŷt = x̄x̂t + z̄ẑt (7.27)

yt = xεt =⇒ ŷt = εx̂t (7.28)

0 = g(xt, yt) =⇒ ŷt = −gx(x̄, ȳ)x̄

gy(x̄, ȳ)ȳ
x̂t (7.29)
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Note that after log-linearizing a dynamic system everything is expressed as % deviations

from steady state with the parameters expressing elasticities.

7.6 Literature

King and Rebelo (1998) – (Old) Handbook of Macroeconomics Article

Cooley and Prescott (1995) – Frontiers of Business Cycles
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Chapter 8

Solving DSGE Models

8.1 Linear Difference Equations

8.1.1 First order

Consider the linear first-order difference equation

xt = φxt−1 + b (8.1)

where |φ| < 1.

Note that this equation is equivalent to

xt = ψxt+1 + c (8.2)

where ψ = 1/φ so that |ψ| > 1 and c = −b/φ.

Let’s iterate the first difference equation backwards and use the fact that |φ| < 1

xt = φtx0 + b
t−1∑
k=0

φk (8.3)

= φtx0 + b
1− φt

1− φ
(8.4)

= φt
(
x0 −

b

1− φ

)
+

b

1− φ
(8.5)
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The first part is the particular solution given an initial condition, whereas the second part

is the general solution.

With the second difference equation, we would get the same result if we iterate forward with

a particular solution being given by a terminal condition at some period t+ j.

Result:

We iterate stable roots backwards and unstable roots forward to obtain a solution to a linear

first-order difference equation. Stability means that we converge to a long-run fixed point

(think steady state) and requires that for

xt = φxt−1 + b (8.6)

we have |φ| < 1.1

Remark:

Note that by using this convention we tend to make an assumption that is not innocuous.

We often assume that we are only looking at non-explosive solutions that converge in the

long-run. The time-paths of backward- or forward-looking solutions are different in general

so that we pick some sort of “appropriate” solution.

8.1.2 Higher Order

In DSGE models we often have second-order difference equations. Consider then

yt+1 + ayt + byt−1 = c (8.7)

We can then turn this into a system of first-order difference equations by defining

xt = yt−1. (8.8)

1Note that for φ ∈ (0, 1) we get monotone convergence, while for φ ∈ (−1, 0) we get dampening oscillations.
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We then have 1 0

0 1

yt+1

xt+1

 =

−a b

1 0

yt
xt

+

1 0

0 0

c
c

 (8.9)

which is just a stacked system of first-order difference equations. We can then apply the

same techniques (but in matrix form) as with a single difference equations.

We will come back to this below when we talk about state space represenations.

8.1.3 Stochastic

The above can be easily extended to have stochastic elements in the difference equations.

Consider a (forward-looking) difference equation

Etxt+1 = αxt + zt (8.10)

where zt+1 – and, hence, xt+1 – are random variables. Suppose further we have an unstable

root, i.e. |α| > 1.

Iterate forward to obtain

xt =
1

α
(Etxt+1 − zt) (8.11)

xt = − 1

α
zt −

∞∑
s=1

(
1

α

)s+1

Etzt+s (8.12)

which is the solution as we did not specify any terminal condition.

8.2 State-Space Representation

8.2.1 Basics

In economics, we deal with systems of difference equations. Hence, it is convenient to write

them in the form of the so-called state-space representation.
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xt+1 = Axt + Cwt+1 (8.13)

yt = Gxt

x0 ∼ N(µ0,Σ0)

• state xt (n× 1 vector)

• iid shocks wt ∼ N (0, I) (m× 1 vector)2

• observations or jump variables yt (k vector)

• n× n transition matrix A

• n×m volatility matrix C

• k × n output matrix G

Note that drawing shocks and initial conditions pins down sequences for (xt, yt). Without

those draws, we can still say something about the (long-run) distribution of those variables.

These distributions are described as follows:

• xt and yt are normally distributed

• E[xt+1] = µt+1 = Aµt

• V ar[xt+1] = Σt+1 = AΣtA
′ + CC ′ since xt+1 − µt+1 = A(xt − µt) + Cwt+1

• E[yt] = Gµt

• V [yt] = GΣtG
′

2A less restrictive assumption would be to require martingale difference equations which are martingales

with zero conditional expectations.
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8.2.2 Example

Let’s look once again at the example of an RBC model with a utility function that is linear

in labour and full depreciation of capital.

Since the economy is efficient we can simply look at the social planning problem which is

given by

maxE0

[
∞∑
t=0

βt
c1−γ
t

1− γ
− χnt

]
(8.14)

subject to

ct + kt+1 = ztk
α
t n

1−α
t (8.15)

ln zt+1 = ρ ln zt + εt+1 (8.16)

where εt+1 is N (0, σ).

The solution is described by

c−γt = βEt
[
c−γt+1(αzt+1k

α−1
t+1 n

1−α
t )

]
(8.17)

χ = c−γt zt(1− α)kαt n
−α
t (8.18)

ct + kt+1 = ztk
α
t n

1−α
t + kt (8.19)

ln zt+1 = ρ ln zt + εt+1 (8.20)

How do we solve this now?

We can log-linearize the system to obtain

− γĉt = Et[−γ + ẑt + (1− α)n̂t − (1− α)k̂t+1] (8.21)

γĉt = ẑt + αk̂t − αn̂t (8.22)

ĉtc̄+ k̂t+1k̄ =
(
ẑt + αk̂t + (1− α)n̂t

)
ȳ (8.23)

ẑt+1 = ẑt + εt+1 (8.24)
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where x̂t is the deviations in logs from the steady state value x̄. Note that to derive the first

approximation, we have used the fact that 1 = βαȳ/k̄.

This is a system of first-order difference equations.

8.3 Blanchard and Kahn

We can write this system in state-space form.

We have

Et


1 α− 1 1− α −γ

α k̄ 0 0

0 0 0 0

0 0 0 0




ẑt+1

k̂t+1

n̂t+1

ĉt+1

 =


0 0 0 −γ

ȳ αȳ (1− α)ȳ −c̄

ρ 0 0 0

1 −α −α −σ




ẑt

k̂t

n̂t

ĉt

 (8.25)

or

AEt[xt+1] = Bxt (8.26)

Hence, the solution is given by

xt = B−1AEt[xt+1] (8.27)

provided the matrix B is non-singular and, hence, invertible.3

We first group the variables into

• “predetermined” and exogenous (state) variables wt

• “control” (jump) variables yt.

Note that the above system has done this already.4

3If this is not the case, one can still solve this system by using the Generalized Schur Decomposition (see

Klein (2000), JEDC and note that DYNARE uses that method).
4One can also set a system where the exogenous state variables or shocks appear in the form of

AEt[xt+1] = Bxt + Czt
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Using the Jordan Decomposition we have

B−1A = P−1ΛP (8.28)

where Λ is a diagonal matrix containing the eigenvalues and P contains the corresponding

eigenvectors.

Using this we obtain that

Et

Λ1 0

0 Λ2

w̃t+1

ỹt+1

 =

w̃t
ỹt

 (8.29)

where w̃t+1

ỹt+1

 =

P11 P12

P21 P22

wt
yt

 (8.30)

The beauty of this approach is that now the two equations are decoupled and can be solved

separately. We are of course interested in the law of motion of the state variables wt, since

these give us a full solution to our problem.

8.4 Stability

This approach is useful, because it gives directly conditions for there to be a unique solution

to this problem. Consider the matrix of eigenvalues Λ.

We have that

• Λ1 corresponds to backward looking variables so that we need stable roots or |λi1| > 1

for all i.

• Λ2 corresponds to forward looking variables so that we need unstable roots or |λi2| < 1

for all i.
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Proposition 8.4.1. If the number of unstable roots is equal to the number of controls, we

have a unique solution.

If the number of unstable roots is larger than the number of controls, we have no solution.

If the number of unstable roots is smaller than the number of controls, we have indetermi-

nancy (multiple solutions or sunspots).

Assume than that we have a unique, stable solution. We then get that the solution requires

ỹt = 0 so that

yt = −P−1
22 + P21wt (8.31)

wt = (P11 − P12P
−1
22 P21)−1w̃t (8.32)

Now, the good news is that DYNARE does everything for you: log-linearization, checking B+K

condition, solving the difference equations.

8.5 Method of Undetermined Coefficients

An alternative method is to guess and verify the solution.

Consider the system of second-order difference equations given by

Et[Fxt+1 +Gxt +Hxt−1 + Lzt+1 +Mzt] (8.33)

where zt+1 = Nzt + εt+1 and Et[εt+1] = 0.

Guess that the solution has the form

xt = Pxt−1 +Qzt. (8.34)
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Use this guess twice in the expectational expression above and use the expression for zt+1 to

calculate the expectations. P is then the solution to the matrix quadratic equation5

FP 2 +GP +H = 0 (8.35)

The solution for Q is obtain from

V Q = −vec(LN +M) (8.36)

where V is a matrix obtained from P and the matrices of parameters.

The TA will go over an example that applies this method with “sensitivity” and not brute

force.

8.6 Impulse Response Functions

To analyze the localized dynamics around the steady state, one can construct impulse re-

sponse functions.

1. Start at an initial condition (i.e. steady state) for (x0, y0, z0) = (x̄, ȳ, z̄).

2. Shock the system with a (one standard deviation or 1 %) shock to w1 assuming that

there are no further shocks.6

3. Recursively, calculate xt, yt and zt.

The interpretation is % deviations of a variable from steady state if the model has been

rewritten in log-deviations from steady state.

5This procedure is equivalent to solve a single second-order difference equation by noting that

xt+2 + axt+1 + bxt = xt
(
x2 + ax+ b

)
= 0

6One could also use a particular sequence of shocks {wt}Tt=1.
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Stability should mean that a temporary (permanent) shock causes the system to return to

the old (new) steady state.

8.7 Second Moments

These can either be obtained by simulation as sample moments or by direct calculations

from the solution of the model.

8.8 Appendix – Eigenvalues and Eigenvectors

For a quick reference and interpretation of these concepts, please refer to Sargent & Stachurski

(2017).

8.9 Literature

Sargent & Stachurski (2017) – Section on Linear State Space Models

Uhlig (1999) – Ch. 3 in Marimon & Scott, Computational Methods for the Study of Dynamic

Economies

Blanchard and Kahn (1980)
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Chapter 9

The New Keynesian Model

9.1 Overview

There are two key deviations from the RBC model.

1. Equilibrium will be demand determined. Why? Monopolistic competition.

2. There are some frictions that cause demand to fluctuate.

Policy (monetary/fiscal) matters to reduce the frictions.

The model boils down to a system of three equations in three unknowns (y, i, π); i.e. output,

nominal interest rates and inflation.

Policy is effective, since it can (in the short run!) influence the real interest rate.

9.2 Households

There are now many goods indexed by i ∈ [0, 1].
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Households value only aggregate consumption which is assumed to be given by

Ct =

(∫ 1

0

Ct(i)
1− 1

ε di

) ε
ε−1

(9.1)

with ε > 1.

Household’s Problem:

max
Ct(i),Nt,Bt

E0

∞∑
t=0

βt
(
C1−σ
t

1− σ
− (Nt)

1+η

1 + η

)
(9.2)

subject to∫ 1

0

Pt(i)Ct(i)di+QtBt ≤ Bt−1 +WtNt − Tt for all t (9.3)

where all prices are expressed in nominal terms.1

Question:2

How do we choose Ct(i) to achieve the maximum aggregate consumption, holding fixed the

total expenditure at some level Zt?

max
Ct(i)

Ct (9.4)

subject to∫ 1

0

Pt(i)Ct(i) = Zt (9.5)

The first-order conditions yield

Ct(i)

Ct(j)
=

(
Pt(i)

Pt(j)

)−ε
. (9.6)

The parameter ε is the elasticity of substitution between two goods.

1ADD
2Note that what follows is being used in many contexts where a variety of goods plays an important role

such as IO or international trade.
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We can now define the aggregate price index by

Pt =

(∫ 1

0

Pt(i)
1−εdi

) 1
1−ε

(9.7)

Plug in Ct(i) in the expenditure constraint to get

Ct(j)Pt(j)
ε

∫ 1

0

Pt(i)
1−εdi = Zt (9.8)

Ct(j) =
Zt
Pt

(
Pt(j)

Pt

)−ε
(9.9)

From the definition of Ct, we have that Zt = PtCt. Hence,

Ct(j) =

(
Pt(j)

Pt

)−ε
Ct (9.10)

This links aggregate demand to the demand for each single good:

• Each good is consumed in proportion to aggregate demand.

• The factor of proportionality decreases in the good’s price relative to the price level.

• The price elasticity of demand for any good is given by ε.

We can then express the household problem only in terms of aggregate consumption and the

aggregate price level.

Cσ
t

(1−Nt)η
=
Wt

Pt
(9.11)

1 = βEt

[(
Ct
Ct+1

)σ
(1 + it)

Pt
Pt+1

]
(9.12)

Hence, the Euler equation remains unchanged so that we have exactly the same micro-

foundations as in the RBC model.

Why? (1 + it)Pt/Pt+1 is the real interest rate.
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9.3 Firms

Production is linear in labour and there is no capital.

Taking the demand function as given, firms set prices as a monopolist to maximize profits.

max
Pt(i)

Pt(i)Yt(i)−WtNt(i) (9.13)

subject to

Yt(i) =

(
Pt(i)

Pt

)−ε
Ct (9.14)

Nt(i) =

(
Yt(i)

At

) 1
α

(9.15)

The first order condition yields

Pt(i)
∂Yt(i)

∂Pt(i)
+ Yt(i)−Wt

1

αAt

(
Yt(i)

At

) 1
α
−1
∂Yt(i)

∂Pt(i)
= 0 (9.16)

where
∂Yt(i)

∂Pt(i)
= (−ε)Yt(i)

Pt(i)

since ε is the price elasticity of demand.

Hence, we obtain the familiar mark-up condition of monopoly pricing.

Pt(i) =

(
ε

ε− 1

)
WtNt(i)

αYt(i)
≡ µϕt(i).

• ϕt(i) are the nominal marginal costs when producing Yt(i)

• µ is the mark-up

• 1/µ can be interpreted as the real marginal costs

• ε measures the market power of firms
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9.4 Sticky Prices

9.4.1 Optimal Price Choice

Since marginal costs are the same across all firms, firms would all set the same price.

Assume instead “Calvo-pricing”. Every period, a fairy appears and allows a fraction of

(1− θ) firms to change their price.

This implies that each firm has a probability of (1− θ) to change its price.

Firms then solve the following problem

max
Pt(i)

∞∑
k=0

θkEt

[
Qt,t+k

(
Pt(i)Yt+k(i)−Wt+k

(
Yt+k(i)

At+k

) 1
α

)]
subject to

Yt+k(i) =

(
Pt(i)

Pt+k

)−ε
Ct+k

where Qt,t+k captures “stochastic equilibrium discounting”.

The first-order condition is given by

∞∑
k=0

θkEt

[
Qt,t+kYt+k(i)

(
Pt(i)−

ε

ε− 1
ϕt+k(i)

)]
= 0

Note that all firms that can change prices today, will chose the same price, P ∗t .

9.4.2 Why Does Inflation Increase Output?

When the price cannot be adjusted in period t+k, the firm is stuck at P ∗t and cannot charge

its desired mark-up µ so that the actual mark-up is

µt =
P ∗t

ϕt+k(i)
6= µ =

ε

ε− 1
.
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The firm thus sets labour demand to satisfy its demand for goods

Nt+k(i) =

(
Yt+k(i)

At+k

) 1
α

=

(
P ∗t
Pt+k

)− ε
α
(
Ct+k
At+k

) 1
α

For fixed P ∗t we have ∂Nt+k(i)/∂Pt+k > 0, so that nominal marginal costs

ϕt+k(i) =
WtNt+k(i)

αYt+k(i)

are large.

Result:

In other words, mark-ups are depressed, i.e. µt < µ or, equivalently, real marginal costs are

high. Mark-ups can be interpreted as a labour wedge so that an unexpected price increase

will depress some mark-ups or, equivalently, increase employment and, hence, output.

Remark:

Note that again there is no unemployment, as in equilibrium income levels will adjust in such

a fashion as to clear the labour market. Notwithstanding, shocks to inflation will have real

effects as some firms cannot change their prices. Importantly, these output fluctuations are

inefficient, as they decrease household’s utility beyond the long-run distortion of monopolistic

competition.

9.4.3 The New Keynesian Phillips Curve

The aggregate price level in period t is given by

P 1−ε
t =

∫
i|fixed

Pt−1(i)1−εdi+ (1− θ)P ∗1−εt (9.17)

The distribution of fixed prices corresponds to the distribution of last periods prices with

weight θ, or

θP 1−ε
t−1 =

∫
i|fixed

Pt−1(i)1−εdi (9.18)
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Hence, the inflation dynamics are given by

Πt =

[
θ + (1− θ)

(
P ∗t
Pt−1

)1−ε
] 1

1−ε

(9.19)

so that inflation changes less than 1-1 with price changes of individual firms.

Log-linearizing and using the firm’s FOC gives3

πt = βEt[πt+1] + λ

(
log

ϕ̄t
Pt
− log

ε− 1

ε

)
(9.20)

= βEt[πt+1] + κ(yt − ynt ) (9.21)

and iterating forward

πt = λ
∞∑
t=0

βkEt

[
log

ϕ̄t+k
Pt+k

− log
ε− 1

ε

]
(9.22)

= λ
∞∑
t=0

βkEt

[(
σ +

η + (1− α)

α

)(
yt+k − ynt+k

)]
(9.23)

where

• ϕ̄t
Pt

are average real marginal costs for firms

• λ = (1−θ)(1−βθ)
θ

α
α+ε(1−α)

• κ = λ
(
σ + η+(1−α)

α

)

Result:

Inflation is given by expected deviations from steady-state mark-up. Inflation is high (low)

whenever firms expect real marginal costs above (below) their steady state values. The

expression in the second line is the output gap which measures the deviation of the actual

output level from the output level associated with flexible prices, ynt , which is not (!) the

optimal output level.

3For details on the algebra, see Gali (2008).
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9.5 Monetary Policy

The model then boils down to three equations determining inflation, the output gap and

nominal interest rates.

Phillips Curve

πt = βEt[πt+1] + κ(yt − ynt ) (9.24)

IS equation

yt − ynt = − 1

σ
(it − Et[πt+1]− rnt ) + Et[yt+1 − ynt+1] (9.25)

where rnt = ρ + σEt[y
n
t+1 − ynt ] is the natural rate of interest which changes due to real (or

supply) shocks.

Taylor Rule

it = ī+ φπ(πt − π̄) + φy(yt − ynt ) (9.26)

The last equation describes the reaction function of a central bank that sets nominal interest

rates.

This rule specifies that the central bank reacts to deviations from an inflation target π̄ which

we can normalize (should?) to 0 and an output gap which we call xt.

It is important to realize that the output gap is specified as deviations in output from the

natural rate of output which corresponds to the output level with fully flexible prices. Hence,

the central bank only reacts to excess deviations relative to the fluctuations of this natural

rate.
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9.6 Dynamics

The model can then be rewritten as xt

πt

 = A

 Et[xt+1]

Et[πt+1]

+ B(rnt − r̄nt − vt) (9.27)

where A and B are functions of parameters.

The term vt is a monetary policy shock and we could extend it to more shocks.

Essentially, we can have three fundamental shocks (one per equation). Modern DSGE models

usually have one shock per equation. More about that later on.

For determinacy/stability, we need to have eigenvalues of A to be less than 1 in modulus.

This is the case if and only if

κ(φπ − 1) + (1− β)φy > 0. (9.28)

This is called the Taylor principle. Taylor’s original estimates for the reation coefficients are

φπ = 1.5 and φy = 0.5/4.

A positive shock to the interest rate delivers

• lower inflation

• higher real interest rates

• a lower output gap

which are consider reasonable impulse responses. Why? Equilibrium nominal interest rates

increase and, hence, there is a so-called “liquidity effect”.

However, one needs a sufficiently high degree of price stickiness for this result.

Note that in response to a positive technology shock, the reaction function implies a decrease

in the nominal interest rate. Why? Since prices are sticky, there is a negative output gap.
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9.7 Optimal Policy

The optimal monetary policy would simply set it = rnt .

This would remove all fluctuations in the economy that arise from the IS equation.

This is the so-called “divine coincidence of monetary policy” that states that there is no

trade-off between inflation and output.

One problem is that such a policy leads to indeterminancy in the model. Why? (see Home-

work!)

One can still rely on a Taylor rule to obtain determinancy and the optimal policy.

There will be a trade-off with shocks to the Phillips curve (mark-up shocks or cost-push

shocks).

9.8 Some Remarks

One can have different frictions built into the model. An important one is a nominal wage

rigidity.

It is not clear how sticky prices or wages are. The empirical literature finds different results.

One can endogenize the degree of stickiness in prices. Examples are menu costs or the

literature on inattentiveness.

9.9 Literature

Gali (2008)

Woodford (2003)
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Chapter 10

Bayesian Estimation of Model

Parameters

10.1 The Kalman Filter

In dynamic models, we often have a situation where some variables cannot be directly

observed, but others can be measured repeatedly and have information about the non-

observable variables.

How can we use repeated measurements to update our forecasts of the unobserved variables?

Consider a spacecraft that needs to land on the moon. We have an estimate of the initial

condition and receive a noisy signal about the current location.

We want to predict where the spacecraft is right now from the prior information, its projected

flight path and the noisy observation.

Two common applications in macroeconomics:

1. Dynamic models with imperfect information and noisy signals
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2. DSGE models and Bayesian Estimation

10.1.1 Set-up

We have a state-space representation with a law of motion

xt+1 = Axt + wt+1 (10.1)

where wt+1 ∼ N (0, Q) and observations

yt = Gxt + vt (10.2)

where vt ∼ N (0, R).

What is crucial here is (i) that we have linear relationships and (ii) that noise and shocks

are normally distributed random variables.

10.1.2 A Simple Example

Let’s assume with have only one state variable and one variable that we observe (i.e. we

approach the moon on a line and not in space!).

Hence, A and G are just numbers and the variances of the shock and noise are given by σ2
w

and σ2
v .

For convenience, we can normalize G = 1.

A Heuristic Solution

We know that x and y have a linear relationship

xt = yt − vt (10.3)
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where v is the noise term in this relationship.

We would like to estimate

E[x|y] = β0 + β1y (10.4)

Since we satisfy all assumption for the classic linear regression model, we obtain immediately

that the OLS estimates are given by

β0 = x̄− β1ȳ (10.5)

β1 =
Cov(x, y)

V (y)
=

σ2
x

σ2
x + σ2

v

(10.6)

Let’s assume now, we know that x ∼ N (µx, σ
2
x). Thus, the unconditional means are given

by x̄ = ȳ = µx, since v is just white noise.

This gives us the estimate for x being

E[x|y] = β1µx + (1− β1)y. (10.7)

Note that for this result, we have (implicitly!) used the fact that the prior information on x

is random and has a variance given by σ2
x. This in a sense is a deviation from the classical

regression model where Cov(x, y) is a quantity observed from the data.

Now, we can simply use the law of motion on xt+1 and the estimated x to find a forecast for

the new state.

Question: Can we actually forecast the variance of xt+1 conditional on y with this approach?

We have that

V [xt+1|yt] = a2V [xt|yt] + V [wt+1] (10.8)

so all we need to do is find V [xt|yt]. This conditional variance tells us how much variance

there is left if we use our estimate of E[xt|yt] to predict xt.
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V [xt|yt] = E[(xt − E[xt|yt])2|yt]

= E[((xt − (1− β1)µx − β1(xt − vt))2 |yt]

= E[(1− β1)2(xt − µx)2 − 2β1(1− β1)vt(xt − µx) + β2
1v

2
t |yt]

= (1− β)2E[(xt − µx)2|yt] + β2
1σ

2
v (10.9)

since vt is orthogonal to xt, yt has no information on vt and E[vt] = 0.

Importantly, we have

E[(xt − µx)2|yt] = E[(xt − µx)2] = V (xt) (10.10)

Why? The observation has information for estimating a new mean for xt, but it has no

information for the deviation of xt from its old mean.

This yields

V [xt|yt] =
σ2
xσ

2
v

σ2
x + σ2

v

(10.11)

A Bayesian Solution

Filtering

Goal: Estimate x from the noisy signal y given prior information.

We use Bayes’ rule for the prior information x ∼ N (µx, σ
2
x) to get

p(x|y) =
p(x, y)

p(y)
=
p(y|x)p(x)

p(y)
(10.12)

The key is to note that given X = x, we have that y ∼ N (x, σ2
v) and that p(y) =∫

p(y|x)p(x)dx is just a number.
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Introspection implies that p(x|y) ∼ N (µ1, σ
2
1) where

µ1 = αµx + (1− α)y (10.13)

σ2
1 =

1

σ−2
x + σ−2

v

(10.14)

α =
σ2
v

σ2
x + σ2

v

(10.15)

What do we then think x is? Well, take the maximum likelihood of the posterior probability.

This is intuitive. The best estimate of x is now a weighted average between the prior

knowledge and the information contained in the observation (aka Bayesian learning).

The weight depends on the signal-to-noise ratio. For example, for very uninformative signals

(large σ2
v) a lot of weight remains on the prior. and little on the observation.

The term 1 − α is called the Kalman Gain and expresses how much new information is

incorporated from the noisy signal.

Forecasting

Goal: Predict tomorrow’s state xt+1 given today’s estimated xt.

The key insight is that xt+1 = axt + wt+1 is a sum of normally distributed variables and,

thus, normally distributed itself.

We then have

E[xt+1|yt] = E[axt + wt+1|yt] = aE[xt|yt] = αµx + (1− α)y (10.16)

V [xt+1|yt] = V [axt + wt+1|yt] = a2V [xt|yt] + V [wt+1] = a2 1

σ−2
x + σ−2

v

+ σ2
w (10.17)

Recursive Procedure
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We have now that the forecast xt+1 with its distribution becomes the new prior.

Iterate now the filtering and forecasting steps.

What about convergence?

• The variance of the forecast only depends on (σ2
x, σ

2
v , σ

2
w).

• We will never figure out x for sure.

• However, the variance converges provided |a| < 1.

• The limit is given by σ2
w.

The estimate of the state x successively incorporates all the information.

10.1.3 The General Case

The general dynamics for the Kalman Filter are described by

x̂t+1 = Ax̂t +KΣt(yt −Gx̂t) (10.18)

Σt+1 = AΣtA
′ −KΣtGΣtA

′ +Q (10.19)

where

KΣt = AΣG′(GΣG′ +R)−1 (10.20)

is the Kalman gain.

Note that the convergence properties for the variance depends once again on the eigenvalues

of the matrix A. A sufficient condition is once again that they are all less than 1 in modulus.
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10.2 Bayesian Estimation of Parameters

An alternative to calibration is to use time series data to estimate the deep parameters of

the model.

The idea here is that instead of starting out with a single value we start out with a prior

distribution on these parameters, use actual data in the model to derive posterior estimates

for the parameters.

10.2.1 Example

To get the idea, we look at a very simple example from statistics.

Suppose we have a simple coin, but we do not know the probability of getting heads or tails.

We can observe data of n coin tosses.

Question: What can we infer about the probability from these coin tosses?

We know that the coin generates data according to a binomial distribution given by

g(y|θ) =

 n

y

 θy(1− θ)n−y (10.21)

This is our model. We know what the likelihood is observing data and assuming a particular

parameter value.

Question: How can we estimate the unknown parameter?

Assume now that we have an initial belief (prior distribution) about the probability being

distributed according to a β distribution so that

h(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 (10.22)
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We use Bayes’ Theorem to get

k(θ|y) =
k(y, θ)

k1(y)
=
g(y|θ)h(θ)∫
k(y, θ)dθ

=
g(y|θ)h(θ)∫
g(y|θ)h(θ)dθ

(10.23)

The distribution of k(θ|y) is our updated belief (posterior distribution) about the probability

having observed the data y.

It depends on the joint distribution k(θ, y) and is scaled by the marginal distribution of y,

k1(y).

If we get another observation of n coin flips, we can use this posterior as our prior and update

our beliefs again, and so forth.

For our example, it turns out that the posterior k(θ|y) is again a beta distribution, but now

with updated parameters (y + α, n− y + β) instead of (α, β). This is very convenient!

Question: What should we use for our estimate?

One can either pick the posterior mean or the posterior mode depending on whether one

would like to minimize the mean squared error or the absolute value of the error.

In the former case, we would have that

E(θ|y) =
α + y

α + n+ β
(10.24)

Question: How can we think about this example in terms of our DSGE model?

• The prior distribution concerns all the parameters we would like to estimate.

• The state space representation gives us our model.

• The likelihood of our model will be derived by using the Kalman Filter or some simu-

lation technique.

• The posterior distribution, however, can not be analytically analyzed.
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10.2.2 Procedure

Basic Idea

1) Draw different parameter values from the initial distribution.

2) Use data and the solution of the model to determine the likelihood function of the model.

3) Use the likelihood function to generate a posterior distribution of the model.

4) Use the posterior to find estimates of the parameters and the impulse response functions.

We can rely on linear state-space systems and Kalman Filtering to obtain the likelihood of

the model when using first-order approximations and normally distributed shocks.1

Problem: The number of observables needs to be smaller or equal to the number of shocks in

the model. Why? Extra observables would be simply deterministic functions of the others

ones.2

Problem: The approach gives us only the likelihood of the approximated solution, and not

the likelihood of the full model. Also, we lose information associated with higher-order

uncertainty such as precautionary behavior.

The Likelihood Function

Consider again our state space system. We can write the likelihood function of our model

given a sequence of data y1:T as

L(y1:T ; θ) =
T∏
t=1

L(yt|y1:t−1; θ) (10.25)

=

∫
L(y1|x0; θ)dx0

T∏
t=1

∫
L(yt|y1:t−1; θ)p(xt|y1:t−1; θ)dxt (10.26)

1Otherwise other techniques such as the particle filter need to be used.
2One could use more observables and assume that there are measurement errors. However, this will lead

to identification issues.
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This is the probability that the data was generated by the model given parameters θ.

How can we compute the likelihood for given parameters θ?

• L(yt|xt; θ) follows from the measurement equation given St

• p(x0; θ) is either the steady state together with the covariance matrix ...

• ... or is specified as draws from a simulation of the model

• p(xt|y1:t−1; θ) is obtained from the Kalman Filter3

The last step is to form the posterior, or

p(θ|y1:T ) ∝ L(y1:T ; θ)p(θ) (10.27)

where p(θ) is our prior distribution.

However, we cannot characterize the posterior distribution in closed form. Why? We only

have an evaluation of the likelihood, not its functional form.

If we can evaluate it, then we can get point estimates for parameters, posterior distributions

for impulse responses to unanticipated shocks and the marginal likelihood of the model

among others.

Evaluating the Posterior

One can rely on Markov Chain Monte Carlo (MCMC) simulation to evaluate the posterior.

Can we generate a Markov chain on parameters θ such that its ergodic distribution is given

by p(θ|y1:T )?4

3This is not applicable for higher-order approximations. One would then need to use different methods.
4In a sense, we are working backwards starting out with the resulting distribution and finding some

process that leads us to this distribution.
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If so, we can draw from this Markov chain to generate and approximate the distribution of

the posterior by the empirical frequency we obtain.

To generate the Markov chain one can rely on the so-called Metropolis-Hastings algorithm.

Step 1: Choose initial values for the parameters θ0, use p(θ0) and p(y1:T , θ0) to evaluate the

posterior.

Step 2: Sample a new value for θ∗i according to θ∗i = θi−1 + ε where ε ∼ N (0,Σ). This gives

us a density q(θi−1, θ
∗
i ).

Step 3: Solve again the model for θ∗i and draw χ ∼ U(0, 1).

If ξ <
p(θ∗i |y1:T )q(θi−1,θ

∗
i )

p(θi−1|y1:T )q(θ∗i ,θi−1)
, use θ∗i .

If not, stay with θi−1.

Step 4: Go back to Step 2 and repeat.

One can generate several such sequences. These sequences should behave as if they were

coming from the posterior p(θ|y1:T ). This means that they should be the same across different

parts of the sequence and they should look the same across different sequences for the same

part of the sequence.

10.2.3 What Priors?

Choosing priors depends mainly on three considerations:

• limits on parameter values

• efficient use of available information

• priors such that the posterior distribution maintains the prior distribution (conjugate)

A few pointers.
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• Beta distribution on [0, 1]: a probability of a binary variable

• Gamma distribution on [0,∞): arrival rate for a Poisson process

• Normal distribution: for the mean of a normally distributed variable

• Inverse Gamma distribution: for the variance of a normally distributed variable

• Pareto distribution: for a uniformly distributed variable

• Uninformative (improper) prior

10.2.4 Implementation in DYNARE

DYNARE does – once again – all the work.

It generates posterior distributions using MCMC methods with the Metropolis-Hastings

method.

One can specify all the parameters of the algorithm.

There is also output for checking convergence of the MCMC.

finally, one can obtain impulse response functions with confidence intervals based on the

posterior distributions of parameters.

10.3 Application: Smets and Wouters (2003) & (2007)

10.4 Literature

Sargent & Stachurski (2017) – Section on Kalman Filter

Smets & Wouters (2007) – AER
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Villaverde, Gueroon-Quintana, Rubio-Ramirez (2009) – The New Macroeconometrics: A

Bayesian Approach

Villaverde (2010) – The Econometrics of DSGE Models
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Part III

Taxes
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Chapter 11

Ricardian Equivalence

11.1 Model

Government:

• builds useless pyramids: gt

• lump-sum taxes: τt

• borrowing: Bt (B0 given)

• feasible policy satisfies

(1 + rt)Bt + gt = τt +Bt+1 (11.1)

Households:

max
{ct}∞t=0

∞∑
t=0

βtu(ct)

subject to

ct + bt+1 ≤ yt − τt + (1 + rt)bt

bt ≥ B

b0 given.
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Definition 11.1.1. An equilibrium for a given feasible policy {τt, gt, Bt+1}∞t=0 and an initial

debt level B0 is given by an allocation {ct, bt+1}∞t=0 and interest rates {rt}∞t=0 such that

1. Given interest rates and lump-sum taxes, the allocation solves the household problem

for b0 = B0.

2. Markets clear

bt+1 = Bt+1 for all t (11.2)

ct + gt = yt for all t. (11.3)

11.2 Main Result

Suppose the sequence of government expenditures {gt}∞t=0 is fixed. The timing of financing

these expenditures by lump-sum taxes is irrelevant for the real allocation in the economy.

In other words, the type of financing (borrowing vs. taxation) does not matter.

Proposition 11.2.1. (Ricardian Equivalence) Let {c∗t , b∗t+1}∞t=0 and {r∗t }∞t=0 be an equilibrium

for a feasible tax policy {τ ∗t , g∗t , B∗t+1}∞t=0. Then {c∗t , b̂t+1}∞t=0, where b̂t+1 = B̂t+1, and {r∗t }∞t=0

is an equilibrium for any feasible tax policy {τ̂t, g∗t , B̂t+1}∞t=0.

11.2.1 Argument

The idea is to show that the household’s FONC and budget constraint do not depend on

how the government finances its expenditure.

Step 1:

FONC

βtu′(ct) = λt (11.4)

(1 + rt+1)λt+1 − λt = 0 (11.5)

lim
T→∞

λT bT+1 = 0 (11.6)

103



—B Feasibility requires ct + gt = yt in equilibrium.

Result:

Equilibrium interest rates are independent of lump-sum taxes and borrowing and depend

only on government expenditure.

Step 2:

The agent’s TVC implies

lim
T→∞

λT bT+1 = lim
T→∞

λt

T−t∏
j=0

1

(1 + rt+j)
bT+1

= u′(ct)β
t lim
T→∞

(
T−t∏
j=0

1

(1 + rt+j)

)
bT+1

= 0

(11.7)

—B This implies a ”No-Ponzi-Game” condition1 on the government.

Result:

In equilibrium,

lim
T→∞

(
T−t∏
j=0

1

(1 + rt+j)

)
bT+1 = lim

T→∞

(
T−t∏
j=0

1

(1 + rt+j)

)
BT+1 = 0 (11.8)

—B The government cannot hold positive wealth “at infinity” (in net present value terms),

as this implies a negative wealth position for the household “at infinity”.

—B The government cannot have debt “at infinity” (in net present value terms), as this

implies that the household has some wealth left over “at infinity”.

Step 3:

1There is a crucial difference between TVC and No-Ponzi-game conditions. The former is a necessary

condition for a solution to an optimization problem in order to prevent the overaccumulation of wealth. The

latter is an (externally) imposed constraint on a problem in order to prevent overaccumulation of debt. Also,

notice that TVC are always an equality representing some form of boundary conditions on the solution of

the problem, while No-Ponzi are inequalities restricting the choice.
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PV budget constraint for the government at any t is derived as follows

Bt = [(τt − gt) +Bt+1]
1

(1 + rt)
(11.9)

Bt =

[
T−t∑
j=0

(τt+j − gt+j)

(
t+j∏
k=t

1

(1 + rk)

)]
+BT+1

(
T−t∏
j=0

1

(1 + rt+j)

)
(11.10)

Bt =

[
∞∑
j=0

(τt+j − gt+j)

(
t+j∏
k=t

1

(1 + rk)

)]
(11.11)

where the last step follows from above.

—B Using the TVC, the PV budget constraint for the household at any t is given by

ct + τt +
∞∑
j=1

(
t+j∏

k=t+1

1

(1 + rk)

)
(ct+j + τt+j) ≤ yt +

∞∑
j=1

(
t+j∏

k=t+1

1

(1 + rk)

)
yt+j + (1 + rt)bt.

(11.12)

—B Using bt = Bt, in equilibrium

ct +
∞∑
j=1

(
t+j∏

k=t+1

1

(1 + rk)

)
ct+j ≤ yt − gt +

∞∑
j=1

(
t+j∏

k=t+1

1

(1 + rk)

)
(yt+j − gt+j) . (11.13)

Result:

The household’s budget constraint only depends on the PV of government spending, but not

on the sequence of taxes and government borrowing.

11.3 Further Remarks

—B Ricardian equivalence fails whenever prices are influenced by changes in policy and/or

the NPV of the agent’s budget constraint changes with policy changes.

• This can be the case with incomplete markets.

• Example I: Borrowing constraints that are binding.

• Example II: Government debt completes the market.

105



—B Ricardian Equivalence depends crucially on the assumption of lump-sum taxation.

With distortionary taxation it will fail – unless taxes are history-dependent (see Basetto

and Kocherlakota (2004)). For example when labour taxes are changed in some period –

and, hence, the surplus –, the NPV of the budget constraint can be left unchanged if one

can tax labour input for that period at a later stage.

—B With uncertainty, the results hold as long as one uses the appropriate stochastic discount

factor/state price process for evaluating the government’s intertemporal budget constraint

and its No-Ponzi condition. Again, as long as markets are complete, this is independent of

the debt instrument the government chooses; i.e., there is no difference between risky vs.

risk-free or long-term vs. short-term debt.

—B There is a general question whether a-priori the government has to satisfy an infinite-

horizon budget constraint or only in equilibrium. If the second holds, the government by

choosing its policy implicitly determines the initial price level such that an infinite-horizon

budget constraint holds in equilibrium. This is called the “Fiscal Theory of the Price Level”

(for details see Kocherlakota and Phelan (1999)).

11.4 Literature

S+L, Ch. 10 and Ch. 13.10

Basetto and Kocherlakota (2004)

Kocherlakota and Phelan (1999)

See also the work by Leeper and Cochrane
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Chapter 12

Long-run Effects of Fiscal Policies

Idea:

Take a standard Neoclassical Growth Model and look at the effects of distortionary taxes on

permanent deviations in output levels from trend growth.1

12.1 Model

Households:

max
{ct,nt}∞t=0

∞∑
t=0

βtu(ct, 1− nt) (12.1)

subject to

(1 + τct)ct + (1 + τxt)xt ≤ (1− τkt)rtkt + (1− τnt)wtnt + Tt (12.2)

kt+1 = (1− δ)kt + xt (12.3)

k0 given (12.4)

ct, kt+1 ≥ 0, nt ∈ [0, 1] (12.5)

Technology:

1Other questions ask whether taxes influence growth rates or the economy in the short-run around the

steady-state.
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—B production function

yt = F (kt, nt) (12.6)

—B standard assumptions (e.g. Cobb-Douglass)

—B constant returns to scale implies zero profits in equilibrium

Government:

—B policy {zt}∞t=0 = {gt, τct, τxt, τkt, τnt, Tt}

—B policy is feasible if it satisfies a flow budget constraint

gt = τctct + τxtxt + τktrtkt + τntwtnt − Tt (12.7)

—B households do not derive utility from government expenditure

12.2 Equilibrium

Definition 12.2.1. A competitive equilibrium given a feasible government policy {gt, τct, τxt, τkt, τnt, T}

is an allocation {(ct, nt, kt+1)}∞t=0 and prices {(rt, wt)} such that

1. given the policy, prices and k0, the allocation solves the household’s problem

2. given prices, {nt, kt} solves the firm’s problem

3. markets clear, i.e.

ct + gt + kt+1 − (1− δ)kt = F (kt, nt) for all t. (12.8)

Equilibrium conditions

—B Firms:

rt = Fk(kt, nt) (12.9)

wt = Fn(kt, nt) (12.10)
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—B Households:

βtuc(ct, 1− nt)− λt(1 + τct) = 0 (12.11)

βtun(ct, 1− nt)− λtwt(1− τnt) = 0 (12.12)

−λt(1 + τxt) + λt+1 [(1− δ)(1 + τxt+1) + rt+1(1− τkt+1)] = 0 (12.13)

lim
T→∞

λT (1 + τxt)kT+1 = 0 (12.14)

—B Market Clearing

12.3 Effects

12.3.1 Tax Wedges

There are two tax wedges :

• intratemporal
(1− τnt)
(1 + τct)

=
un(ct, 1− nt)

uc(ct, 1− nt)Fn(kt, nt)
(12.15)

• intertemporal

uc(ct, 1− nt)
βuc(ct+1, 1− nt+1)

=
(1 + τct)

(1 + τct+1)

[
(1− δ)(1 + τxt+1)

(1 + τxt)
+ Fk(kt+1, nt+1)

(1− τkt+1)

(1 + τxt)

]
(12.16)

Remark: If there is no tax/subsidy on investment and taxes are constant, we obtain for the

intertemporal wedge the much easier expression

[(1− δ) + Fk(kt+1, nt+1)(1− τk)] . (12.17)

General Idea:

—B These wedges can be important to understand relative levels of income/output across

countries with similar characteristics.
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—B Remove trend growth from data (relative to a benchmark). Then, look at relative

performance of countries and their tax policies (see e.g. Prescott (2002)). Hence, equilibrium

levels relative to a benchmark matter.2

—B One can use data to assess which factors cause the difference in performance (e.g. taxes

vs. “detrended TFP”)

12.3.2 Steady State

The steady state is given by the solution (cSS, nSS, kSS) to

1 = β

[
(1− δ) +

(1− τk)
(1 + τx)

Fk(k
SS, nSS)

]
(12.18)

uc(c
SS, 1− nSS)

un(cSS, 1− nSS)
=

(1− τn)

(1 + τc)
Fn(kSS, nSS) (12.19)

g + cSS + δkSS = F (kSS, nSS) (12.20)

Result:

—B Suppose u(c, 1− n) = u(c), i.e. labour is inelastically supplied. Then, τc 6= 0 does not

influence the steady-state value of capital.

—B Why? Taxing consumption is non-distortionary if labour is inelastically supplied.

—B Hence, τx = τk = 0 is optimal and kSS is first-best.

12.3.3 Transition

Dynamics are described by a second-order difference equation in capital k treating the ex-

ogenous3 variables z as given parameters: H(kt, kt+1, kt+2; zt, zt+1) = 0.

Question: How do we compute the equilibrium path given a sequence of tax policies?

2This is in contrast to RBC studies that analyze the effects of policy stabilizing the economy in response

to shocks. There, statistical properties of time-series of variables matter.
3These are in general variables describing government policy as well as exogenous shocks.
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Shooting-Algorithm:

1. Fix government policy z. Assume there exists T such that zt = const. for all t ≥ T .

2. Find steady state given zT .

3. Let Tmax >> T . Assume that in Tmax we have reached a steady state.

• Guess c0 and use k0 to find n0 and k1 from the FONC in t = 0 and from market

clearing.

• Use k1 to find (c1, n1) from the Euler equation and the FONC in t = 1.

• Iterate forward until period Tmax.

4. Calculate kTmax − kSS = ε.

5. If ε > 0(< 0), increase (decrease) c0. Go back to Step (3). If ε ' 0, stop.

Remark:

For a different algorithm to calculate the equilibrium in an economy with tax distortions,

see Coleman (1991). The algorithm is based on iterating directly on the intertemporal Euler

equation to obtain the law of motion for capital.

Remark:

DYNARE can solve for transitions. One needs to define an initial and a final steady state

together with shocks and a length of transition. Try it!

12.4 Literature

Sargent and Ljunqvist, Ch. 11

Cooley, Ch. 2 and Ch. 3

Coleman, Econometrica (1991)
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Chapter 13

Optimal Taxation under Commitment

13.1 Preliminaries

Question:

What is the optimal (i.e., welfare maximizing) tax policy?

Themes:

• long-run distortionary taxes on productive factors

• tax smoothing vs. response to cyclical fluctuations

• importance of commitment

• importance of full information for the government (New Public Finance)

“Ramsey”-Problem:

• Primal approach: eliminate all prices and choose equilibrium allocation directly (Ram-

sey allocation problem)

• Dual approach: choose taxes and, hence, the after-tax factor prices as well as interest

rates on debt
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13.2 Model

Technology:

• CRS: F (k(st), l(st), st)

• factor prices: r(st) and w(st)

Government:

• expenditure {g(st)}∞t=0 exogenously given

• chooses policy π = {π(st)}∞t=0 = {τl(st), τk(st), (1 + rb(s
t))}∞t=0

• flow budget constraint:

g(st) + (1 + rb(s
t))b(st−1) = τl(s

t)w(st)l(st) + τk(s
t)[r(st)− δ]k(st−1) + b(st) (13.1)

• expenditure and choice of policy pins down the sequence of debt levels

Households:

max
{c(st),b(st),k(st),l(st)}∞t=0

∞∑
t=0

∑
st

βtµ(st)u(c(st), 1− l(st)) (13.2)

subject to

c(st) + k(st) + b(st) ≤ k(st−1) + (1− τk(st))[r(st)− δ]k(st−1) +

+(1− τl(st))w(st)l(st) + (1 + rb(s
t))b(st−1) (13.3)

(k−1, b−1) given (13.4)

c(st), k(st) ≥ 0, l(st) ∈ [0, 1] (13.5)

—B plus some No-Ponzi-Game condition

—B households are identical here

—B hence: absence of private contingent claims is irrelevant
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13.3 Definition of Ramsey Equilibrium

• Allocation and Price rules: given policy π an allocation x = (c, b, k, l) and prices (r, w)

are realized in equilibrium

• x(π) = {x(st|π)}∞t=0, r(π) = {r(st|π)}∞t=0, w(π) = {w(st|π)}∞t=0

• k−1 and b−1 are given (i.e. inelastically “supplied”)

• hence: we take the tax rate and the interest rate on these variables as given

Definition 13.3.1. A Ramsey Equilibrium for a given initial tax rate on capital τk(s0) and

a given initial interest rate rb(s0) is a policy π and allocation and price rules (x,w, r) such

that

1. π maximizes the household’s utility subject to the government’s flow budget constraint

2. for all policies π′, x(π′) solves the household’s problem taking π′, r(π′) and w(π′) as

given

3. for all policies π′,

w(st|π′) = Fl(k(st|π′), n(st|π′), st)

r(st|π′) = Fk(k(st|π′), n(st|π′), st)

for all st, for all t.

—B The second and third condition impose that allocation and price rules form competitive

equilibria.

—B The planner chooses then a second-best being restricted by the equilibrium choices of

the agents.

Remark: We impose that households and firms behave optimally for all possible government

policies. Suppose this was not the case. Then, take any policy and find an allocation and
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price rule that is a competitive equilibrium given this policy. The policy is optimal for an

allocation rule that specifies that people supply zero labour for all policies except for the

one policy we look at. Obviously, under appropriate assumptions on u, zero labour supply

cannot be an equilibrium except for a 100% tax on labor income.

13.4 Long-run Capital Taxes should be Zero

We will use the Dual Problem.

• no uncertainty and {gt}∞t=0 given

• for simplicity, we assume τct = 0

• government chooses new factor prices

r̄t = (1− τkt)(rt − δ) (13.6)

w̄t = (1− τlt)wt (13.7)

• equilibrium characterized by

ul(ct, 1− lt)
uc(ct, 1− lt)

= w̄t (13.8)

λt = λt+1(1 + r̄t+1) = λt+1(1 + rbt+1) (13.9)

F (kt, nt) = gt + ct + kt+1 − (1− δ)kt (13.10)

• in equilibrium, we have:

gt + (1 + rbt)bt−1 = τltwtlt + τkt(rt − δ)kt + bt

= (wt − w̄t)lt + (rt − δ − r̄t)kt + bt

= Fl(kt, lt)lt + Fk(kt, lt)kt − w̄tlt − r̄tkt − δkt + bt

= F (kt, lt)− w̄tlt − r̄tkt − δkt + bt
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Ramsey Problem:

max
{r̄t,w̄t,ct,lt,kt}∞t=0

∞∑
t=0

βtu(ct, 1− lt) (13.11)

subject to (13.12)

F (kt, lt)− w̄tlt − r̄tkt − δkt + bt = gt + (1 + r̄t)bt−1 (13.13)

F (kt, lt) = gt + ct + kt+1 − (1− δ)kt (13.14)

ul(ct, 1− lt)
uc(ct, 1− lt)

= w̄t (13.15)

uc(ct, 1− lt) = βuc(ct+1, 1− lt+1)(1 + r̄t+1) (13.16)

where the first constraint is the government flow budget constraint taking into account

equilibrium conditions for the stand-in firm.1

FONC (w.r.t. kt+1):

νt = β
{
νt+1 [Fk(kt+1, lt+1) + (1− δ)] + ψt+1 [Fk(kt+1, lt+1)− r̄t+1 − δ)]

}
(13.17)

—B νt > 0 is the Lagrange multiplier on the resource constraint at t

—B ψt ≥ 0 is the Lagrange multiplier on the government budget constraint at t

—B hence: MC of capital in t = MV of capital in t+ 1

—B second term consists of (i) increase in resources and (ii) decrease in tax burden

Use intertemporal Euler-equation for household (1 = β(1 + r̄)) to obtain in SS

ν

(
1

β
− 1

)
= ν(r − δ) + ψ(r − δ − r̄)

νr̄ = ν(r − δ) + ψ(r − δ − r̄)

0 = (ν + ψ)[(r − δ)− r̄].

(13.18)

1It seems one would also have to include the household’s budget constraint. This is redundant, however,

as it is always fulfilled when the market clearing condition and the government’s budget constraints hold.
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Proposition 13.4.1. (Chamley (1986)) Suppose the economy converges to a steady-state

for any given government policy. Then, it is optimal to set τSSk = 0.

Remarks:

1. Judd (1985) shows that is never optimal to tax capital in steady-state in order to

redistribute wealth among agents.

2. Note that this result applies only for the steady state. It can be optimal to tax capital

over the transition to the steady state.

13.5 Primal Approach to the Ramsey Problem

13.5.1 Ramsey Allocation Problem

Optimization Problem for the Planner:

max
{c(st),l(st),k(st)}

∞∑
t=0

∑
st

βtµ(st)u(c(st), 1− l(st)) (13.19)

subject to

c(st) + g(st) + k(st) = F (k(st−1), l(st), st) + (1− δ)k(st−1) (13.20)
∞∑
t=0

∑
st

βtµ(st)
[
uc(s

t)c(st) + ul(s
t)l(st)

]
= (13.21)

uc(s0)
[
k−1 + (1− τk0)(r(st)− δ)k−1 + (1 + rb0)b−1

]
(13.22)

—B The last condition is an “implementability” condition.

—B It is the household’s intertemporal budget constraint...

—B ...and can be obtained by using the FONC to eliminate prices.2

2Again, the government’s budget constraint is implied by the resource constraint and the household’s

budget constraint. The TA will derive this equation.
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Proposition 13.5.1. The allocation (c, k, l) associated with the policy of a Ramsey equilib-

rium solves the Ramsey Allocation Problem.

Proof. We show that all restrictions imposed in the definition of the Ramsey equilibrium can

be summarized by the two constraints in the Ramsey allocation problem.

Step 1: Add the feasibility constraint and the government flow budget constraint to obtain

the household’s budget constraint. This uses CRS in production. This shows that we can

use any 2 of these three constraints.

Step 2: Describe all necessary conditions for the household’s problem given a policy π. These

are

βtµ(st)uc(s
t) = λ(st) (13.23)

βtµ(st)ul(s
t) = −λ(st)(1− τl(st))wt (13.24)

λ(st)b(st)−

 ∑
st+1|st

λ(st+1)(1 + rb(s
t+1))

 b(st) = 0 (13.25)

λ(st)k(st)−

 ∑
st+1|st

λ(st+1)(1 + (1− τk(st))(r(st)− δ))

 k(st) = 0 (13.26)

lim
t→∞

λ(st)b(st) = 0 (13.27)

lim
t→∞

λ(st)k(st) = 0. (13.28)

Multiply the budget constraint by λ(st) for all st and sum until infinity to obtain a life-time

budget constraint for the household. Using the definition of w(st), r(st) and λ(st) from the

FONC of firms and households plus the no-arbitrage condition on bonds and capital, one

obtains the “implementability condition”.

Step 3: Take any solution to the Ramsey Allocation Problem. Then, it satisfies feasibility

and the “implementability condition”. One can construct Lagrange multipliers, bond and

capital holdings so that the solution satisfies the FONC for a competitive equilibrium as

described above and the sequential budget constraints.
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13.5.2 Necessary Conditions

Goal: decompose the problem into an initial period and a dynamic part that (under certain

conditions) evolves endogenously as a Markov process

—B Incorporate the implementability constraint into the objective function

W (c(st), l(st), ν) = u(c(st), l(st)) + ν
[
uc(s

t)c(st) + ul(s
t)l(st)

]
(13.29)

Ramsey allocation problem in Lagrangian form:

max
{c(st),l(st),k(st)}

∞∑
t=0

∑
st

βtµ(st)W (c(st), l(st), ν)+

− νuc(s0) [k−1(1 + (1− τk0)(r(s0)− δ) + b−1(1 + rb0)]

+ ν(st)
[
F (k(st−1), l(st), st) + (1− δ)k(st−1)− c(st) + g(st) + k(st)

]
(13.30)

FONC for t ≥ 1:

−Wl(s
t)

Wc(st)
= Fl(s

t) (13.31)

Wc(s
t) =

∑
st+1|st

βµ(st+1|st)Wc((st+1, s
t))
[
1− δ + Fk((st+1, s

t))
]

(13.32)

FONC for t = 0:

−
Wl(s0)− ν

(
ucl(s0) [k−1(1 + (1− τk0)(r(s0)− δ) + b−1(1 + rb0)]− uc(s0)[1− τk0]Fkl(s0)

)
Wc(s0)− νucc

[
k−1(1 + (1− τk0)(r(s0)− δ) + b−1(1 + rb0)

]
= Fl(s0) (13.33)

Wc(s0)− νucc(s0)
[
k−1(1 + (1− τk0)(r(s0)− δ) + b−1(1 + rb0)

]
=
∑
s1|s0

βµ(s1|s0)Wc((s1, s0)) [1− δ + Fk((s1, s0))] (13.34)
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13.5.3 Solving for a Ramsey Equilibrium

—B The above system of 4 equations describes the necessary conditions for a Ramsey equi-

librium given by (c(st), l(st), k(st)) and ν. The Ramsey equilibrium allocation together with

the multiplier ν has to satisfy these equations, the feasibility constraints and the imple-

mentability constraint.

—B To compute an equilibrium, take ν as fixed and solve the system of equations without the

implementability constraint. Then check wether the implementability constraint is satisfied.

If it is not, adjust the multiplier (or “price”) ν accordingly.

—B Given the Ramsey Allocations, we can use the household’s and the firm’s equilibrium

conditions to easily recover prices and tax policies (r, w, τl, τk, rb).

13.6 Ramsey Policies

13.6.1 Indeterminancy of Capital Taxes

—B Ramsey policies need to implement an equilibrium. We take the Ramsey allocation as

given.

—B static Euler equation gives τl(s
t) for all st

−ul(s
t)

uc(st)
= (1− τl(st))Fl(st) (13.35)

—B rb(s
t) and τk(s

t) are described by intertemporal Euler equation and the budget con-

straints

uc(s
t) =

∑
st+1|st

βµ(st+1|st)uc(st+1|st)(1 + rb(st+1|st)) (13.36)

uc(s
t) =

∑
st+1|st

βµ(st+1|st)uc(st+1|st)
(
1 + (1− τk(st+1|st))(Fk(st+1|st)− δ)

)
(13.37)

c(st+1|st) + b(st+1|st) + k(st+1|st)) = (1− τl(st+1|st))Fl(st+1|st)l(st+1|st)

+(1 + rb(st+1|st))b(st) +
(
1 + (1− τk(st+1|st))(Fk(st+1|st)− δ)

)
k(st) (13.38)
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—B If we have N states, there are 2N variables to be determined, but we have only N + 2

equations given today’s state is st.

—B Accounting for one linear dependency, we haveN−1 degrees of freedom for implementing

the equilibrium.

Intuition:

• need to “design the right asset” for the agents

• have to span N states – or, state-dependent net deficit

• need to offer the correct ex-ante returns on two assets, capital and government bonds

Result: There are N − 1 degrees of freedom (or indeterminancy) to set capital taxes and

interest rates on government debt. This implies that either capital taxes or interest rates

can be state-independent.

Result: The ex-ante tax rate on capital income is uniquely defined by

τ ek(st) =

∑
st+1|st q(st+1|st)τk(st+1|st) [Fk(st+1|st)− δ]∑

st+1|st q(st+1|st) [Fk(st+1|st)− δ]
(13.39)

where q(st+1|st) is the Arrow-Debreu price of consumption in state (st+1|st).

13.6.2 Optimal Taxation

—B We can decompose Ramsey policies in two parts.

Results (Dynamic Part):

• Suppose st follows a first-order Markov process. The Ramsey policies can then be

described by time-invariant policy rules τl(k, s|ν), τ ek(k, s|ν) and the state-dependent

net deficit which also follow a first-order Markov process.
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• Note that the solution of the dynamic part depends on the parameter ν, which is the

multiplier on the implementability constraint.

Results (Initial Period):

• The period t = 0 policies are different from the stationary ones.

• The ex-ante tax on capital, τ ek , is forward-looking. Hence, capital taxes for period t = 1

are different.

Remark:

The initial conditions (τk0, rb0, k−1, b−1) pin down the value of the multiplier ν, which is

interpreted as the utility cost of financing government expenditure through distortionary

taxation. Note that τk0 and rb0 are exogenously given. If not, one would simply set τk0 = 1

and finance all government expenditures up-front through interest earned on renting out the

capital stock.

Why?

—B The derivative of the planner’s welfare function w.r.t. to τk0 is given by

νuc(s0)(Fk(s0)− δ)k−1 ≥ 0. (13.40)

Given any ν > 0, by raising τk0, the government reduces utility costs from distorting taxation

as initial capital is a fixed factor.

—B When ν = 0, the government has enough tax revenue from τk0 to finance its future

expenditure.

13.6.3 When are Zero Taxes on Capital Optimal?

—B We restrict attention to utility functions of the form

u(c, 1− l) =
c1−σ

1− σ
+ V (1− l) (13.41)
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where σ > 0 and V is strictly concave.

Proposition 13.6.1. With the above utility function, the optimal ex-ante tax rate on captial

income is given by

τ ek(st) = 0 (13.42)

for all t ≥ 1.

Proof. For t ≥ 1, the intertemporal Euler-equation for the Ramsey problem is given by

Wc(s
t) =

∑
st+1|st

βµ(st+1|st)Wc((st+1, s
t))
[
1− δ + Fk((st+1, s

t))
]

. (13.43)

With the above utility function, we have that

Wc(s
t+1)

Wc(st)
=
c−σ(st+1)

[
1 + ν(1− σ)

]
c−σ(st)

[
1 + ν(1− σ)

] =
uc(s

t+1)

uc(st)
. (13.44)

The intertemporal Euler equation for the household is given by

uc(s
t) =

∑
st+1|st

βµ(st+1|st)uc(st+1|st)
(
1 + (1− τk(st+1|st))(Fk(st+1|st)− δ)

)
. (13.45)

Hence, subtracting the households intertemporal Euler equation from the one of the Ramsey

planner, we obtain

0 =
∑
st+1|st

βµ(st+1|st)
uc(s

t+1)

uc(st)
τk(st+1|st)

[
Fk(st+1|st)− δ

]
=

∑
st+1|st

q(st+1|st)τk(st+1|st)
[
Fk(st+1|st)− δ

]
,

(13.46)

where q(st+1|st) is the Arrow-Debreu price. This implies that the ex-ante tax rate on capital

income is 0 for all t ≥ 1.

13.7 Tax Smoothing

13.7.1 Environment

• no capital
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• labor is transformed into output 1-1

• government expenditure given by an exogenous stochastic process {{gt}∞t=0|g : St → IR}

• the probability distribution induced by government spending is given by µ(st)

• financed by one-period state-contingent debt b(st) and taxes on labor income τl(s
t)

In equilibrium, government will be restricted by a present-value budget constraint. Hence,

any current government deficits must be eventually financed by taxes.

13.7.2 Ramsey Allocation Problem

max
{c(st),l(st)}

∞∑
t=0

∑
st

βtµ(st)u(c(st), 1− l(st)) (13.47)

subject to

c(st) + g(st) = l(st) (13.48)
∞∑
t=0

∑
st

βtµ(st)
[
uc(s

t)c(st) + ul(s
t)l(st)

]
= uc(s0)(1 + rb0)b−1 (13.49)

FONC for t ≥ 1:

(1 + ν)uc(s
t) + ν

[
c(st)ucc(s

t)− (c(st) + g(st))ulc(s
t)
]

=

(1 + ν)ul(s
t) + ν

[
c(st)ucl(s

t)− (c(st) + g(st))ull(s
t)
] (13.50)

Result:

Ramsey allocation depends only on the current government expenditure g(st) and, hence, is

history-independent and time-independent.

13.7.3 Some Examples

Constant Government Expenditure
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• gt = g for all t

—B FONC and market clearing imply that ct = c and lt = l for all t.

—B From the household problem we have

ul(s
t)

uc(st)
= 1− τl(st). (13.51)

Result : τl = τ for all t.

—B Using this FONC from the households labor choice, the implementability constraint is

given by
∞∑
t=0

∑
st

βtµ(st)uc(s
t)
[
τl(s

t)l(st)− g(st)
]
− uc(s0)(1 + rb0)b−1 = 0. (13.52)

Result :

• If b−1 = 0, the government’s budget is balanced for all t, i.e. τ l = g.

• If b−1 > 0, the initial outstanding debt plus interest is redeemed over time by taxes

exceeding government spending according to

1

1− β
(τ l − g) = (1 + rb0)b−1 > 0. (13.53)

A Perfectly Foreseen One-period War

• gT > 0 and gt = 0 for all t 6= T .

• Assume: b0 = 0.

—B For t 6= T , the allocation and taxes are constant.

—B From the FONC one can derive the following condition3

(1 + ν)
[
c(st)uc(s

t)− l(st)ul(st)
]

+ ν
[
c(st)2ucc(s

t)− 2l(st)c(st)ulc(s
t) + l(st)2ull(s

t)
]

− ν(st)(c(st)− l(st)) = 0.

(13.54)

3See e.g. S+L, p.510.

125



Result :

• For t 6= T , c = l. Also, ν > 0 as the government must resort to distortionary taxation.

• One can show that the second term is negative for any u strictly concave. It then

follows that c(st)uc(s
t)− l(st)ul(st) > 0.

• We have then for t 6= T that

0 < c+ l
ul
uc

= c− l(1− τ) = τ l. (13.55)

• For t = T , cT < lT and the above argument does not go through.

—B This implies that the government first runs a surplus. It uses the surplus to build up

assets by buying bonds from the consumer until T−1 (in other words, the consumer borrows

from the government). Then, in period T it sells all its bonds and issues more bonds, which

it roles over forever at a constant interest rate.

—B The household needs to finance its consumption partly by issuing debt to the government

until T − 1. In T it settles all outstanding debt and buys government bonds. Later on, it

uses the interest income to finance its tax obligations.

—B Why? Except for period T , aside from distortionary taxation there is no direct impact

of the government on the economy, so that consumption equals output.

A Chance for a One-Period War

• Same set-up as before except for gT > 0 with probability α and gT = 0 otherwise.

The optimal debt policy is now state-contingent:

• For t = 0, . . . , T − 2, the gov’t buys bonds from the consumer using its tax revenue.

• At t = T − 1, the gov’t sells all bonds and uses the proceeds plus tax revenue to create

the following portfolio of assets:
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1. It buys state-contingent bonds from the consumer that only pay a return if gT > 0,

i.e. if there is a war.

2. It issues non-contingent bonds. This ensures to perfectly smooth taxes, even if

there is no war in period T .

• At T , if there is no war, the gov’t pays interest only on the non-contingent bonds. If

there is a war, the gov’t receives pay-offs from the contingent bonds to finance gT > 0.

• After T , the gov’t rolls over debt irrespective of history.
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Chapter 14

New Public Finance

14.1 A 2-period Moral Hazard Problem

14.1.1 Model

Risk-neutral principal:

• pays a wage w to the agent

• discounts the future according to β = 1
1+r

= 1
R

Risk-averse agent:

• choses action a ∈ A

• preferences: u(w)− c(a) with discounting according to β

• outcomes: {x1, . . . , xN} with probability πi(a)

• strategy: (s0, s1, . . . sN) where s0 is the period 1 action and si is the action taken in

period 2 conditional on the observed outcome xi in period 1
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Private Information:

• Principal cannot observe action a.

• Realized Outcome x is publicly observable.

Contract:

• state-contingent path of wages for the agent

• finite N implies a contract is a list of N +N2 wages

• in utility terms, we have z =
(
{u(wi)}Ni=1, {u(wij)}Ni,j=1

)

14.1.2 Main Results

Proposition 14.1.1. The Pareto-optimal contract satisfies

1

u′(wi)
=

N∑
j=1

πj(si)
1

u′(wij)
(14.1)

for all i = 1, . . . , N .

Proof. Consider any contract z and the optimal strategy s given z. Change the contract for

only one state i in the first period to

z̃i = zi − y (14.2)

z̃ij = zij +
y

β
for all j = 1, . . . , N . (14.3)

Then, the original strategy is still optimal, since (i) for j 6= i the contract doesn’t change,

(ii) the relative pay-offs for ij do not change and (iii) the NPV of the contract remains

unchanged.

It must then be the case that the optimal contract minimizes the costs of the principal at

y = 0. The costs for the principal is given by

u−1(zi + y) + β

N∑
j=1

πj(si)u
−1

(
zij −

y

β

)
. (14.4)
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The FONC needs to be 0 at y = 0 which gives

1

u′(wi)
=

N∑
j=1

πj(si)
1

u′(wij)
(14.5)

which completes the proof.

14.1.3 Properties of the Optimal Contract

1. Memory: If wi 6= wj, then there exist k such that wik 6= wjk.

2. “Martingale Property”: If 1
u′

is convex (concave/linear), wi ≥ (≤ / =)
∑N

k=1 πk(si)wik.

3. The agent is “savings-constrained”: Since the agent bears income risk in the 2nd period,

he would like to save some of his wage in the first period for additional consumption

in the second period.

Proposition 14.1.2. In the optimal contract, the agent is constrained in his savings.

Proof. Consider the problem

max
b
u(wi − b) + β

N∑
j=1

πj(si)u(wij + (1 + r)b) (14.6)

which yields a necessary condition equal to

−u′(wi − b) +
N∑
j=1

πj(si)u
′(wij + (1 + r)b) = 0. (14.7)

At b = 0, this FONC must be positive, since we have from the optimal contract

u′(wi) =
1∑N

j=1
πj(si)

u′(wij)

≤
N∑
j=1

πj(si)u
′(wij) (14.8)

where the last inequality follows from the weighted arithmetic mean being larger than the

weighted harmonic mean (by Jensen’s inequality).

Hence, with the optimal contract the agent would like to set b > 0 if given the opportunity

to save.
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14.1.4 Digression: Martingales

Definition: Let X1, X2, . . . be a sequence of random variables on a probability space (Ω,F , P )

for which E[|Xn|] <∞ and let F1,F2, . . . be a filtration on F such that Xn is measurable Fn.

The sequence {(Xn,Fn) : n = 1, 2, . . . } is a martingale (supermartingale) (submartingale),

if a.s.

E[Xn+1|Fn] = (≤)(≥)Xn.

—B A martingale reflects a fair gamble. A gambler with wealth Xn given his information

after the n-th play expects his wealth after the next round to be the same as his current

wealth.

Supermartingale Convergence Theorem

Let {Xt} be a non-negative supermartingale. Then Xt → X a.s. such that E|X| < +∞.

—B Any non-negative supermartingale converges to a random variable whose mean is finite

(which implies that the distribution of the random variable does not have any mass on +∞).

14.2 Generalizing the Inverse Euler Equation

14.2.1 Model

• measure one of agents

• preferences
T∑
t=1

βt−1 [u(ct)− v(lt)] (14.9)

where u strictly concave, v strictly convex and both are bounded

• idiosyncratic shocks: θT drawn from µΘ

• effective labour: yt(θ
T ) = φt(θ

T )lt(θ
T )
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• open economy: βR = 1

Assumptions:

1. People privately learn θt at the beginning of period t.

2. Output yt and consumption ct are publicly observed.

Hence, allocations in period t are only θt measurable.

Remark: All shocks are drawn at the start of time. Hence, all variables in period t are

functions of the shocks drawn, but are measurable only with respect to the history of shocks

revealed up to period t.

Remark: Note that the agents can chose a particular (c, y), once they have observed their

labour productivity φ. After reporting φ, the planner instructs them to deliver output y

which is associated with utility u(c(φ)) − v(y(φ)/φ∗), where φ∗ is the true realized idiosyn-

cratic productivity shock.

14.2.2 Pareto Problem

Let ω be the utility level promised to a group of people. A Pareto optimal allocation (c∗, y∗)

solves for some ω∗

max
c,y

∑
θT

∑
t

βt−1µ(θT )
[
u(ct(ω

∗, θT ))− v(yt(ω
∗, θT )/φt(θ

T ))
]

(14.10)

subject to∑
θT

∑
t

βt−1µ(θT )
[
u(ct(ω, θ

T ))− v(yt(ω, θ
T )/φt(θ

T )
]
≥ ω for all ω 6= ω∗ (14.11)

∑
ω

∑
θT

∑
t

R−tµ(ω)µ(θT )
[
ct(ω, θ

T )− yt(ω, θT )
]
≤ 0 (14.12)

V (σTT ; c, y, ω) ≥ V (σ; c, y, ω) for all σ, ω (14.13)

132



The constraints are ex-ante promised utility, intertemporal feasibility and truthtelling, re-

spectively.

Step 1 – Perturbation

Consider any incentive feasible allocation (c∗, y∗). Then, for some time t and some group

with utility ω∗, change the allocation to (c′, y∗) according to

u(c′t(ω
∗, θT )) = u(c∗t (ω

∗, θT )) + ∆ + ε(θt) for all θT (14.14)

u(c′t+1(ω∗, θT )) = u(c∗t+1(ω∗, θT ))− β−1ε(θt) for all θT (14.15)∑
θT

[c′t(ω
∗, θT )− c∗t (ω∗, θT )]µ(θT ) +R−1

∑
θT

[c′t+1(ω∗, θT )− c∗t+1(ω∗, θT )]µ(θT ) = 0 (14.16)

This perturbation is incentive feasible, since

• it leaves all other utilities ω untouched

• it scales utilities V by ∆ for all reporting strategies σ

• it is resource feasible.

Note that the perturbation happens at specific dates t and t + 1 and only across all paths

with initial history θt.

Step 2 – Pareto Problem Rewritten

The optimal allocation solves the problem

max
∆,ε,c′t,c

′
t+1

∆ (14.17)

subject to

(14.14) - (14.16)

The solution must be ∆ = 0, ε = 0, and c′ = c∗.

Step 3 – FONC at (0, 0, c∗t , c
∗
t+1)
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Denote the Lagrange multiplier on the first two constraints ηt(·) and ηt+1(·). The multiplier

on the resource constraint is given by λ.∑
θT

ηt(θ
T ) = 1 (14.18)

−
∑
θT≥θt

ηt(θ
t) + β−1

∑
θt+1

∑
θT≥(θt+1,θt)

ηt+1(θt) = 0 (14.19)

u′(c∗t (θ
T ))

∑
θT≥θt

ηt(θ
T ) = λ

∑
θT≥θt

µ(θT ) (14.20)

u′(c∗t+1(θT ))
∑

θT≥(θt+1,θt)

ηt+1(θT ) = λR−1
∑

θT≥(θt+1,θt)

µ(θT ) (14.21)

Rewriting, we obtain the result

1

u′(c∗t (ω
∗,ΘT ))

= E

[
1

u′(c∗t+1(ω∗,ΘT ))
|θt
]

(14.22)

where we have used the fact that βR = 1.

—B The inverse of the marginal utility follows thus a martingale. Any change on the inverse

of marginal utility today has the same expected change on the inverse of marginal utility in

the future. Hence, all shocks have permanent effects.

—B Why does it work? The key here is that both consumption and the marginal utility of

consumption are publicly observable for the planner. This allows us to use the perturbation

method as in the two-period moral hazard model to characterize Pareto-optimal allocations.

—B Again, we have that there is a wedge in the standard Euler equation,

u′(c∗t (ω
∗,ΘT )) < E

[
u′(c∗t+1(ω∗,ΘT ))|θt

]
(14.23)

which implies that people are savings-constrained.

—B What is the intuition? Suppose the agent is not savings-constrained so that the above

equality holds with equality. Then, there is a small second-order loss for reducing consump-

tion smoothing, but a first-order gain from offering better insurance when u′(ct+1) is not

constant across θt+1.
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14.3 Dynamic Mirrlees Taxation

14.3.1 General Idea

Ramsey Taxation:

• planner needs to use linear taxes

• minimize distortions (deadweight loss) from linear taxes

• cannot choose lump-sum taxes

Mirrless Taxation:

• planner can choose any tax system he wants

• but faces frictions (information, enforcement, etc.)

• optimal tax system achieves a constrained Pareto optimal allocation

• need to balance insurance vs. incentives

• can choose lump-sum taxes, but does not want to

14.3.2 Model

• measure one of agents

• preferences
T∑
t=1

βt−1 [u(ct)− v(lt)] (14.24)

where u strictly concave, v strictly convex and both are bounded

• aggregate shock: zT drawn from µZ

• idiosyncratic shocks: θT drawn from µΘ
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• aggregate shock zt and θt learned at the beginning of period t

• effective labour: yt(θ
T , zT ) = φt(θ

T , zT )lt(θ
T , zT )

• effective labour is publicly observed; labor input and skills are private information

• aggregate production function CRS

Assumption: Again all shocks are drawn at the start of time. Hence, all variables in period

t are functions of the shocks drawn, but are measurable only with respect to the history of

shocks revealed up to period t.

14.3.3 The Inverse Euler Equation Once More

Feasible allocation:∑
θT

ct(θ
T , zT )µ(θT ) +Kt+1(zT ) +G(zT ) ≤ F (Kt, Yt, z

T ) + (1− δ)Kt(z
T ) (14.25)

where Yt(z
T ) =

∑
θT yt(θ

T , zT )µ(θT ) and G(zT ) is government expenditure.

Incentive Compatibility:

—B strategy: σ : θT × ZT → θT × ZT

—B pay-off: V (σ; c, y) =
∑T

t=1 β
t−1
∑

zT

∑
θT [u(ct(σ))− v(lt(σ))]µ(θt)µ(zt)

—B truthtelling strategy σ∗

An allocation is incentive compatible, if

V (σ∗; c, y) ≥ V (σ; c, y) (14.26)

for all σ.

A Pareto-optimal allocation maximizes ex-ante expected utility subject to being resource

feasible and incentive compatible.
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We again use the fact that there cannot be any way to redistribute consumption between

today and tomorrow’s states to save costs, while leaving the expected utility of any agent

the same at any point in time for any shock (θT , zT ) – which implies incentive compatibility.

We solve a perturbed problem given by

min
ct,ct+1,Kt+1,ξ

∑
θT

ct(θ
T )µ(θT ) +Kt+1 (14.27)

subject to

u(ct(θ
T )) = u(c∗t (θ

T , zt)) + β
∑
zt+1

ξ(θT , zt+1)µ(zt+1|zt) for all θT (14.28)

u(ct+1(θT , zt+1)) = u(c∗t+1(θT , zt+1))− ξ(θT , zt+1) for all θT , zt+1 � zt (14.29)∑
θT

ct+1(θT )µ(θT )− Ft+1(Kt+1, Yt+1(zt), zt)− (1− δ)Kt+1 = −Kt+2(zt+1, z
t)−Gt+1 for all zt+1 � zt

(14.30)

The first-order necessary conditions are given by

µ(θt)− ηt(θt)u′(ct) = 0 (14.31)

− u′(ct+1)ηt+1(θt+1) + γ(zt+1|zt)µ(θt+1) = 0 for all zt+1 (14.32)

1−
∑
zt+1

γ(zt+1|zt)
[
1− δ +MPK(zt+1|zt)

]
= 0 (14.33)

βηt(θ
t)µ(zt+1|zt)−

∑
θt+1

ηt+1(θt+1) = 0 for all zt+1 (14.34)

where – slightly abusing notation – η’s and µ’s are understood where appropriate to be

the sum of all probabilities and Lagrange multipliers across future paths given a history θt.

Define λt+1 = γ(zt+1|zt)
µ(zt+1|zt) which yields the following result.

Proposition 14.3.1. Suppose (c∗, y∗, K∗) is an optimal allocation. Then, there exists a

zt+1-measurable function λ∗t+1 : ZT → R+ such that

λ∗t+1 = β
1

E
[
u′(c∗t )

u′(c∗t+1)
|θt, zt+1

] (14.35)

E
[
λ∗t+1(1− δ +MPK(zt+1|zt))|zt

]
= 1 (14.36)
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Again, we get a wedge in the intertemporal Euler equations. To see this, use first Jensen’s

inequality to obtain

λ∗(zt+1) < βE

[
u′(c∗t+1)

u′(c∗t )
|θt, zt+1

]
(14.37)

for all zt+1 succeeding zt. Plugging into the second equation and using the law of iterated

expectations, we obtain

βE
[
u′(c∗t+1)(1− δ +MPKt+1)|θt, zt

]
> u′(c∗t ). (14.38)

Later on, the idea for implementing the optimal allocation will be to choose taxes on capital so

that the intertemporal Euler equation holds with equality for any agent in the decentralized

economy.

14.3.4 Interpreting λ∗t+1

We call λ∗t+1 the social discount factor.

—B The Lagrange multiplier λ∗t+1 is the shadow value of a unit of more resources tomorrow.

It expresses the discounted value of an additional amount of resources next period in event

zt+1 taking into account the probability of the event. The shadow value of today’s resources

has been normalized to 1.

—B The proposition states that the social discount factor is equal to the harmonic mean of

the MRS conditional on θt and is independent of individual histories θt. That is all agent’s

harmonic mean of the MRS has to be equal to λ∗t+1(zt+1) after history zt.

—B The social discount factor then determines how much capital should optimally be ac-

cumulated.

—B The social discount factor takes into account that an extra unit of consumption needs

to be split in such a fashion as to keep the utility level (!) fixed across different histories

θt. This is very different from raising everyone’s consumption by some amount in order to

equate marginal utilities.
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14.3.5 Decentralization through a Tax System

We restrict ourselves to

• non-linear labour taxes ψ : IRT
+ × ZT → IRT

• linear capital taxes τ : IRT
+ × ZT → IRT

Hence, the agent pays taxes on new and old capital according to τt(y(θt, zt), zt)(1 − δ +

rt(z
t))kt(θ

t, zt) where I have slightly abused notation with respect to states.

How do capital taxes look like?

Proposition 14.3.2. Capital taxes equate agent’s after-tax MRS with the social discount

factor, or

(1− τt+1(yT , zT ))
βu′(c∗t+1(yT , zT ))

u′(c∗t (y
T , zT ))

= λ∗t+1(zT ). (14.39)

Note that taxes depend on observable output and not directly on the announcement of skills.

I assume here that there is a 1-1 mapping between the two.

—B Taxes are history-dependent (θt matters) and are state-contingent (ct+1 matters) as

they have to depend on next periods labour income through consumption. Hence, there is

uncertainty for the household about tomorrow’s capital tax rate.

—B Capital taxes are high when future consumption is low and vice versa. This deters a

deviation which includes saving more, work too little when skilled and claim to be unskilled

tomorrow.

Results:
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1) At the optimal tax, the intertemporal Euler equation of the agent is satisfied for the

optimal allocation. Why?

βE[(1− τt+1)u′(c∗t+1)(1− δ + rt+1)|θt, zt]− u′(c∗t ) = βu′(c∗t )
[
E[λ∗t+1(1− δ + rt+1)|θt, zt]− 1

]
(14.40)

2) Conditional on (θt, zt+1)), tomorrow’s expected individual capital tax is zero.

E[(1− τ ∗t+1)|θt, zt+1] = λ∗t+1β
−1u′(ct)E

[
1

u′(ct+1)
|θt, zt+1

]
(14.41)

3) Aggregate capital taxes are zero for any history zt+1.∑
θT

τ ∗t+1k
∗
t+1(1− δ +MPK∗t+1)µ(θT ) =

= (1− δ +MPK∗t+1)E[τ ∗t+1k
∗
t+1|zt+1] = (1− δ +MPK∗t+1)E[E[τ ∗t+1|θt, zt+1]k∗t+1|zt+1] = 0

Hence, capital taxes do not raise revenue and are purely redistributive.

4) Labour taxes are lump-sum and thus are chosen to satisfy the budget constraints at the

optimal allocation.

5) Current capital taxes are a decreasing function of people’s consumption/skills (see above).

Remark: We have assumed throughout that agents cannot engage in side trades that can

undermine the planner’s incentive scheme.

14.4 Literature

Rogerson, Econometrica (1985)

Kocherlakota, Econometrica (2005)

Kocherlakota, The New Dynamic Public Finance (2010)
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Part IV

Introduction to Search Theory
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Chapter 15

Search and Unemployment

15.1 The Mortensen-Pissarides Model

15.1.1 Set-up

• measure 1 of workers (w)

• large measure of firms (f)

• linear preferences and discounting at β

• states: e ∈ {0, 1} – unemployed, employed

• if employed, firm produces y and pays wage w

• random matching with probability λj

• a match is separated with probability δ

Assumption 15.1.1. 1. Firms post vacancies at cost k and there is free entry.

2. Workers get a benefit b when unemployed.
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15.1.2 Bellman Equations

Ww
1 (t) = wt + βWw

1 (t+ 1) + βδ(Ww
0 (t+ 1)−Ww

1 (t+ 1)) (15.1)

Ww
0 (t) = b+ βWw

0 (t) + βλw(t)(Ww
1 (t+ 1)−Ww

0 (t)) (15.2)

W f
1 (t) = y − w + βW f

1 (t+ 1) + βδ(W f
0 (t+ 1)−W f

1 (t+ 1)) (15.3)

W f
0 (t) = max{−k + βW f

0 (t+ 1) + βλf (t)(W f
1 (t+ 1)−W f

0 (t+ 1)); βW f
0 (t+ 1)} (15.4)

Using free entry, it must be the case that firms make zero profits from posting a vacancy.

W f
0 (t+ 1) = 0 (15.5)

or

k = βλf (t)W f
1 (t+ 1) (15.6)

for all t.

The law of motion for unemployed people is given by1

u(t+ 1) = u(t)(1− λw(t)) + δ(1− u(t)) (15.7)

We need now to figure out two things.

—B First, the wage w is determined by Generalized Nash Bargaining when a match occurs.

—B Second, the matching probabilities (λw, λf ) are determined by a matching technology

and the behaviour of the agents; i.e., the number of vacancies posted which depends on wages

which in turn depends on the (endogenous) outside options in the bargaining problem.

1The number of vacancies ensures that – given the matching probabilities – firms make zero profits. More

below.
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15.2 Steady State Equilibrium

15.2.1 Nash Bargaining

The Bellman equations are now given by

Ww
1 = w + βWw

1 + βδ(Ww
0 −Ww

1 ) (15.8)

Ww
0 = b+ βWw

0 + βλw(Ww
1 −Ww

0 ) (15.9)

W f
1 = y − w + β(1− δ)W f

1 (15.10)

0 = −k + βλfW f
1 (15.11)

We solve the following problem

max
w

(Sf )
η (Sw)1−η (15.12)

where

Sf = W f
1 −W

f
0 (15.13)

Sw = Ww
1 −Ww

0 (15.14)

Note that
∂Si
∂w

= 1− β + βδ(≡ ρ) (15.15)

Solution:

ηSw = (1− η)Sf (15.16)

or

η =
Sf

Sf + Sw
(15.17)

This implies that

Sf =
y − w
ρ

(15.18)

Sw =
w − b
ρ+ βλw

(15.19)
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where the denominators are to be enterpreted as the discount factor of a match. In a sense,

separation is worse for a firm since it has to reincur the fix cost of posting a vacancy.

After some algebra we arrive at

w =
ηρb+ (1− η)(ρ+ βλw)y

ρ+ (1− η)βλw
(15.20)

k =
ηβ(y − b)λf

ρ+ (1− η)βλw
(15.21)

So everything depends on the matching probabilities.

15.2.2 Equilibrium Market Tightness

Assume a CRS matching function M(u, v) that satisfies

M(u, v)/u = M(1, θ) and M(u, v)/v = M(1, θ)/θ (15.22)

The variable θ = v
u

is called market tightness.

Since M(u, v) describes the number of matches, we have

λw = M(1, θ) = θλf . (15.23)

Definition 15.2.1. An equilibrium is given by value functions (W f
1 ,W

w
1 ,W

w
0 ), an equilib-

rium wage w, a market tightness θ and levels of unemployment and vacancies (u, v) such

that

1. The free entry condition holds for θ.

2. Given market tightness and the value functions, the wage solves the bargaining problem

between firms and workers.

3. The number of unemployed workers and vacancies satisfy the law of motion for unem-

ployment given market tightness θ.
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Equilibrium condition

k =

(
M(1, θ)

θ

)(
ηβ(y − b)

ρ+ (1− η)βM(1, θ)

)
(15.24)

From θ∗, one can now calculate u∗ = δ/(δ +M(1, θ∗)), v∗, w∗, etc.2

To show that – for k sufficiently small – an equilibrium exists and is unique, note first that

the RHS is a continuous, strictly decreasing function of θ.3

Why? The denominator is given by

θ

M(1, θ)
ρ+ (1− η)βθ (15.25)

which is increasing in θ, since M1(u, v) > 0.

Furthermore, for θ →∞, we have that the RHS goes to 0.

Why? M(1, θ) is increasing in θ.

Hence, there exists a unique θ∗ satisfying this equation.

15.2.3 Dynamics

Interestingly, the dynamics do not look really any different from steady-state.

Why?

—B One can show that the Nash bargaining problem is independent of t.

—B To do show, one can express the value functions in terms of net present value of wages

and incomes.
2For some basic insights in comparative statics, see homework and the discussion with the TA.
3Note that

M(1, θ)−M2(1, θ)θ = M1(u, v)

and that

M2(u, v) = M2(1, θ).

Prove it!
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—B This yields a first-order-difference equation in market tightness that is fulfilled for level

of market tightness in steady state. This might not be the unique solution though.

Hence, for any sequence {ut}∞t=0, we can compute the time path of the economy.

15.3 Efficiency

Let’s think about how the planner is constrained.

• matching technology

• free entry condition

• exogenous separation

We have transferable utility, since people are risk-neutral. Hence, the planner can simply

maximize joint surplus by choosing market tightness θ taking as given the law of motion

on unemployed people and that – given # of unemployed u – a total number of vacancies

v = θu needs to be created.

The recursive planner’s problem is given by

P (u) = max
θ
ub+ (1− u)y − kv + βP (u′) (15.26)

subject to

u′ = (1−M(1, θ))u+ (1− u)δ (15.27)

v = θu (15.28)

In the homework, you verify that the (unique) solution to this problem is described by a

linear function with slope a1.

The FOC is given by

−ku+ βP ′(u′)(−1)M2(1, θ)u = 0 (15.29)
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Using the envelope condition, P ′(u) = a1 for all u and the value of a1, we obtain4

k =
β(y − b)M2(1, θ)

ρ+ βM1(1, θ)
. (15.30)

Comparing this condition with the equilibrium condition, we obtain the following result.

Proposition 15.3.1 (Hosios Condition). The equilibrium is efficient if and only if

η =
M2(1, θ)θ

M(1, θ)
(15.31)

Intuition:

—B This is the classic case of a search externality.

—B Firms do not necessarily take into account the social value of creating a vacancy.

—B Since the posting cost k is sunk, the bargaining problem does not take it into account.

Hence, conditional on being in a match, the worker bargains as if there are no fixed cost. In

other words, there is a hold-up problem for the firm.

—B Unless the bargaining power is just right, firms will not invest the socially optimal

amount.

—B More generally, individuals in search problems do not necessarily take into account their

actions on the aggregate market tightness. For example, searching for a job will decrease

someone else’s probability of finding a match.

15.4 Competitive Search

15.4.1 Set-up

—B market makers set up submarkets

—B each submarket is characterized by a posted wage

4See previous footnote.
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—B firms and workers “direct” their search to a submarket and are randomly match accord-

ing to M(u, v) in that submarket

—B market makers can charge workers a fee for entering the submarket

—B firms will enter any submarket as long as they can recover their fixed cost k through

expected profits

15.4.2 Main Idea

Workers will choose the submarket with the highest expected (!) payoff.

This payoff depends on (i) the promised wage and (ii) on the probability of finding a job in

the submarket – or the market tightness.

The market maker thus proposes (w, θ) to the worker and ensures that he can satisfy this

market tightness by attracting enough firms.

Since there is competition among submarkets, the fees charged by market makers are 0.

Market Maker’s problem:

max
(w,θ)

M(1, θ)βWw
1 + (1−M(1, θ))βWw

0 (15.32)

subject to

k =

(
M(1, θ)

θ

)(
β(y − w)

ρ

)
(15.33)

(15.34)

Note that the last condition is the free entry condition for firms with the second term on the

RHS being βW f
1 .

The constraint pins down an iso-profit line in the space (w, θ) for all market makers. That

is, it gives all combinations of θ and w that are consistent with zero profits on the firm side.
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Hence, there is a relationship θ = θ(w) that defines all feasible submarkets. It is any iso-

profit curve that arises from the free entry condition and ties the hands of market makers

to deliver any particular market tightness θ.

Totally differentiating the constraint yields

dθ

dw
=

M(1, θ)

(y − w)
(
M2(1, θ)− M(1,θ)

θ

) < 0 (15.35)

Hence, if a market offers a higher wage, it is getting tighter, that is there are less vacancies v

given a fixed number of workers u. Hence, workers will trade off a higher wage with a lower

probability of a match.

In equilibrium, we have that all workers are indifferent between all submarkets and we can

assume that there is only a single submarket open.

15.4.3 Efficiency

We can now solve for the competitive search equilibrium.

To do so, we first solve for the value functions to obtain

Ww
1 −Ww

0 =

(
1

ρ+ βM(1, θ)

)
(w − b) (15.36)

Ww
0 =

(
1

1− β

)
b+

(
β

1− β

)(
M(1, θ)

ρ+ βM(1, θ)

)
(w − b) (15.37)

The market maker’s problem is thus (up to some normalizing constant)

max
w

(
M(1, θ(w))

ρ+ βM(1, θ(w))

)
(w − b) (15.38)

The first-order condition is given by

(y − w)

(
M(1, θ)

θ
−M2(1, θ)

)
= M2(1, θ)(w − b) ρ

ρ+ βM(1, θ)
. (15.39)
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Using the constraint θ(w) we have once again

k =
β(y − b)M2(1, θ)

ρ+ βM1(1, θ)
. (15.40)

Proposition 15.4.1. Competitive search equilibrium is efficient.

The intuition is that the set-up forces agents to consider the impact of wages they earn on

the creation of vacancies and the costs associated with it. Market markers take into account

that higher wages lower firms profits and, hence, there are less vacancies, markets are more

tight and workers finding a job with lower probability.

15.5 Matching Functions

15.5.1 Basics

Consider a matching function M(u, v).

In discrete times, this expresses the # of matches during a time interval given the # of

unemployed people u looking for work and the # of vacancies v.

In continuous time, it is the instantaneous rate of job matching given the instantaneous

stocks u and v.

Basic properties:

• M(0, v) = M(u, 0) = 0

• M(u, v) ≤ min(u, v)

• M is increasing in u and v and concave.

• M/u and M/v are probabilities of matching.

• The inverse of these are the mean duration of unemployment and vacancies.
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15.5.2 The Role of Elasticities

The elasticity is defined as
∂M(u, v)

∂x

x

M
= ηx. (15.41)

ηu measures the positive externality of workers on firms (thick market).

Why? M1(u, v) > 0.

ηu − 1 measures the negative externality of workers on other workers (congestion).

Why? ∂λw/∂u ∝ ηu − 1.

The same for ηv and ηv − 1.

15.5.3 Constant vs. Increasing Returns to Scale

The most common matching function is based on an urn-ball experiment. Workers send

applications to exactly one vacancy and one application is randomly selected for the vacancy.

The resulting matching function is

M = v
(

1− (1− 1/v)u
)

(15.42)

which can be approximated by

M = v
(
1− e−

u
v

)
. (15.43)

They are homogenous of degree 1 and, hence, exhibit constant returns to scale.

An alternative is the Cobb-Douglas matching function

M = µuαv1−α (15.44)

where α ∈ (0, 1).
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If thick market effects outweigh congestion effects, we get a matching function that exhibits

increasing-returns-to-scale. This is the case when

ηv + ηu − 1 > 0. (15.45)

There are some microfoundations that give rise to such elasticities which point to larger

markets being better for matching.

15.6 Literature

Mortensen & Pissarides (1994), REStud

Burdett, Shi & Wright (2001), JPE

Petrongolo & Pissarides (2001), JEL

Shimer (2005), AER – Quantitative critique of the basic search model based on the Beveridge

curve
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Chapter 16

Search and Liquidity

16.1 Set up

• time is continous

• measure 1 of people

• M ∈ (0, 1) have one unit of money

• money is indivisible and no one can hold more than one unit

• people can produce for other people a specific good

• people cannot consume their own good

• u(q) strictly increasing and strictly concave

• c(q) strictly increasing and convex

• they discount time according to e−rt

Each agent faces a probability of a meeting according to a Poisson process with arrival rate

αM and α(1−M) conditional on having money or not.
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There is only a trade opportunity if a potential buyer (money) meets a potential seller (no

money).

16.2 Value Functions in Continuous Time

16.2.1 Heuristic Derivation

We first derive the value function by approximating the continuous time stochastic process.

For a small time interval ∆, we have that

e−r∆ ≈ 1

1 + r∆
(16.1)

The value of a seller is thus given by

Vs(t) =
1

1 + r∆

[
αM∆ (Vb(t+ ∆)− c(qt+∆)) + (1− αM∆)Vs(t+ ∆) + o(∆)

]
(16.2)

where o(∆) captures all higher order terms. The notation means that o(∆) goes faster to 0

that ∆ goes.

Rewrite the equation to obtain

r∆Vs(t) = αM∆ (Vb(t+ ∆)− Vs(t+ ∆)− c(qt+∆)) + Vs(t+ ∆)− Vs(t) + o(∆) (16.3)

Divide now by ∆ and consider ∆→ 0 to obtain

rVs(t) = αM(Vb(t)− Vs(t)− c(qt)) + V̇s(t) (16.4)

Similarly, for buyers we obtain

rVb(t) = α(1−M)(u(qt) + Vs(t)− Vb(t)) + V̇b(t) (16.5)
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16.2.2 Mathematical Derivation

We now derive the value functions precisely. Note that we take into account the exact form

of the Poisson matching process.

The sellers value is given by

Vs(t) = Et

[∫ τ

t

ūe−r(s−t)ds+ (Vb(τ)− c(qτ ))e−r(τ−t)
]

(16.6)

where τ is the stopping time of having a first arrival and where I have added a flow component

ū ≡ 0 for generality.1

We now use the fact that τ is distributed according to a Possion process to get

Vs(t) =

∫ ∞
t

[∫ τ

t

ūe−r(s−t)ds+ (Vb(τ)− c(qτ ))e−r(τ−t)
]
αMe−αM(τ−t)dτ (16.7)

and differentiating with respect to time t we obtain

V̇s(t) =
d

dt

∫ ∞
t

[∫ τ

t

ūe−r(s−t)ds+ (Vb(τ)− c(qτ ))e−r(τ−t)
]
αMe−αM(τ−t)dτ (16.8)

= −αM(Vb(t)− c(qt)) +

∫ ∞
t

d

dt

([∫ τ

t

ūe−r(s−t)ds+ (Vb(τ)− c(qτ ))e−r(τ−t)
]
αMe−αM(τ−t)

)
dτ

(16.9)

= −αM(Vb(t)− c(qt)) +

∫ ∞
t

[∫ τ

t

ūe−r(s−t)ds+ (Vb(τ)− c(qτ ))e−r(τ−t)
]

(αM)2e−αM(τ−t)dτ+

(16.10)∫ ∞
t

[∫ τ

t

rūe−r(s−t)ds− ū+ r(Vb(τ)− c(qτ ))e−r(τ−t)
]
αMe−αM(τ−t)dτ

(16.11)

= −αM(Vb(t)− c(qt)) + αMVs(t) + rVs(t) +

∫ ∞
t

ūαMe−αM(τ−t)dτ (16.12)

= rVs(t)− αM (Vb(t)− Vs(t)− c(qt)) + ū (16.13)

where we first apply the Leibniz rule at t = τ and then apply the Leibniz rule again for the

integral with respect to t at t and use the expression for Vs(t).

1Note that here we can even allow ū(t).
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16.3 Steady State

We close the model now once again with bargaining.

The quantity q solves in steady state

max
q

(u(q) + Vs)
η(Vb − c(q))1−η (16.14)

subject to (16.15)

Vb − c(q) ≥ Vs (16.16)

Vs + u(q) ≥ Vb (16.17)

Note that the value functions depend on the optimal q. However, the buyer and seller only

take into account the quantity that is produced in their match.

The seller incurs an immediate cost, while the buyer incurs an immediate benefit. Hence,

when the seller participates, the buyer must have an incentive to participate as well. The

second constraint is therefore never binding.

The FOC is given by (
1− η
η

)(
u(q) + Vs
Vb − c(q)

)
=
u′(q)

c′(q)
(16.18)

The value functions are given by

rVb = α(1−M)(u(q) + Vs − Vb) (16.19)

rVs = αM(Vb − Vs − c(q)) (16.20)

Proposition 16.3.1. There exists a unique monetary equilibrium. If η = 1/2, we have that

u′(q) > c′(q).

Proof. Use the value functions to rewrite the FOC as a function of q only.
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This function T (q) is zero at q = 0, increasing at q = 0, continuous in q and eventually

becomes negative for large q. This shows existence of an unconstrained monetary equilibrium

with q > 0 by the intermediate value theorem.

For uniqueness, observe that the RHS of the FOC is strictly increasing and the LHS of the

FOC is strictly decreasing in q on some interval (0, q̄) where T (q̄) < 0.

Finally, at the first best u′(q∗) = c′(q∗), one can show that if η = 1/2, we have that T (q∗) <

0.

Remark: There is always a non-monetary equilibrium with q = Vs = Vb = 0. This equilibrium

is not interesting.

Remark: We can define a price equal to p = 1/q because one unit of money purchases q

goods.

16.4 Liquidity and Efficiency

We assume for now that η = 1/2.

Let’s define welfare by

W = MVb + (1−M)Vs (16.21)

which can be seen as an ex-ante expected utility of a representative agent.

From the value functions, we get

rW = M(1−M)(u(q)− c(q)). (16.22)

A social planner would choose

u′(q) = c′(q) (16.23)

so that the equilibrium is inefficient.
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The inefficiency arises again from the fact that sellers cannot cash in immediately for the

production.

One can show that as r → 0 or α → ∞, we have q → q∗. Hence, greater discounting or

search frictions increase the inefficiency.

Question: Does changing the money supply improve efficiency?

Differentiating the welfare function with respect to M yields

∂W

∂M
=

1

r

(
(u(q)− c(q))(1− 2M) +M(1−M)(u′(q)− c′(q)) ∂q

∂M

)
(16.24)

Hence, there is a trade-off between a liquidity effect and a price effect.

—B Suppose q were fixed. Then, it is optimal that M = 1/2. Why? The number of meetings

is maximized.

—B Suppose M is very small. Then, ∂q/∂M > 0. Why? Upon a meeting, sellers have a

chance to generate surplus for themselves in the future. Hence, conditional on being in a

meeting, they are “desperate” to acquire money.

—B For M = 1/2, however, we have that ∂q/∂M < 0. Hence, the price level increases when

money increases. This implies that M∗ < 1/2.

Remark: We could also look at how bargaining power affects the quantity produced. It turns

out to be the case that ∂q/∂θ > 0 with a range from 0 to q1 > q∗.

16.5 Dynamics

We look at some primitive dynamics. To do so, set η = 1; i.e., the buyer makers a take-it-

or-leave-it-offer. Furthermore, we can set c(q) = q without loss of generality.
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From the bargaining problem, we thus have immediately that

q(t) = Vb(t)− Vs(t) = Vb(t) (16.25)

since the buyer extracts all surplus.

Thus, q̇ = V̇b and the dynamics are described by an ordinary first-order difference equation

q̇ = rq − α(1−M)u(q) (16.26)

which yields two steady states2, q = 0 and q̃ defined by

u(q̃)

q̃
=

r

α(1−M)
. (16.27)

Note that the RHS of the differential equation is a continuous, convex function that decreases

for q → 0.

Proposition 16.5.1. The non-monetary steady state is stable, while the monetary steady

state is unstable. There is a continuum of paths that converge to the non-monetary steady

state.

Not that all these paths are purely driven by self-fulfilling expectations (or sunspots!). In

essence, we can pick any q0 ∈ (0, q̃) for a non-stationary equilibrium that converges to q = 0.

16.6 Literature

Trejos and Wright (1995) – JPE

Duffie, Garleanu, Pedersen (2005) – Econometrica

2Since u is strictly concave, we have that u′(q) > u(q)/q.
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Part V

Information in Macroeconomic

Models
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Chapter 17

News Shocks

17.1 Introduction

What are “news shocks”?

Direct Shocks to Expectations:

A random variable follows a process given by

xt = ρxt−1 + ξt + εt−s (17.1)

Here ξt are surprises and ε is information received s periods ago about the random variable

in period t.

This implies that we have to offset an anticipated shock that does not happen by setting

ξt = −εt−s.

Noise signals:

People receive imperfect signals about the true state of the world

sit = xt + εit (17.2)
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Note that the signals could be public or private ones. If there are private ones, issues of

higher order beliefs and common knowledge arises.

Expectations are automatically revised upon receiving new signals or information (e.g.

through prices).

17.2 Co-movement puzzle

There is an old idea that business cycles are driven by expectations about the future and

disappointments related to these expectations.

One would expect that consumption, investment and labour supply would move in the same

direction if people receive “news” that changes their expectations about the future.

Consider the following RBC model:

max
C,N,K

E0

[
∞∑
t=0

βt
(

logCt + ψ
(1−Nt)

1−η

1− η

)]
(17.3)

subject to (17.4)

Ct +Kt+1 ≤ eatKα
t N

1−α
t + (1− δ)Kt (17.5)

xt = ρxt−1 + ξt + εt−4 (17.6)

The impulse functions from DYNARE are shown below.

The issue is that with a positive news shock about future productivity the labour supply

and investment falls.

Why?

• The labour demand curve does not shift at all since productivity has not increased yet.
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Figure 17.1: RBC Model – IRF w.r.t to news shock

• There is a positive income effect as future expected income has increased. The con-

sumer smoothes consumption by both (!) consuming some of the capital stock and

increasing its leisure.

• Hence, the labour supply curve shifts and we have lower equilibirum employment.

• Once the productivity has increased, there is an investment boom and the labour

demand shifts. Hence, there is higher equilibrium employment starting in period 5.

When we increase the elasticity of substitution, we can shift the labour supply curve due to

a strong substitution effect to generate positive investment. However, consumption falls at

the same time.

Beaudry and Portier (2007) JET have shown that in any one-sector growth model consump-

tion and investment must move in opposite direction in response to news shocks.
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Figure 17.2: RBC Model with γ = 1/4 – IRF w.r.t to news shock

17.3 Moving Labour Supply

17.3.1 Multi-Sector Growth Models

Consider the following production function

Ct = (Xν
t +Kν

t )
1
ν (17.7)

that makes intermediate inputs and capital imperfect substitutes.

Suppose further that intermediate goods and capital are produced according to

Xt = eatNα
X,t (17.8)

Kt+1 − (1− δ)Kt = Nα
i,t (17.9)

Nt = NX,t +Ni,t (17.10)

Suppose there is a news shock about an increase in at+1, the productivity in the intermediate

goods sector. Then, people will increase capital investment in period t already so that they
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can take advantage of increased productivity tomorrow. This requires more labour. Hence,

we have a positive shift in labour supply.

Why? Xt+1 and Kt+1 are complementary in production.

Remark: We need linear disutility of labour. Otherwise, we see a relocation from the in-

termediate goods sector to the investment goods sector. This can be solved by separating

households into workers in different sectors.

17.3.2 Consumption Habit

Consider now a difference preference structure given by

E0

[
∞∑
t=0

βt
(

log(Ct − hCt−1) + ψ
(1−Nt)

1−η

1− η

)]
(17.11)

These preference imply that households do not want consumption fall too much. Note that

households internalize their effect of today’s consumption on tomorrow’s consumption.

What is the marginal utility of consumption today?

∂U

∂Ct
=

βt

Ct − hCt−1

− Et
[

βt+1h

Ct+1 − hCt

]
(17.12)

Suppose the consumer expects higher consumption Ct+1. Then, his marginal utility of con-

suming more today increases. Hence, he will work more and we have – once again – a positive

shift in the labour supply.
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Figure 17.3: NK model – IRF w.r.t to news shock in 4 periods

17.4 Moving Labour Demand

17.4.1 Basic NK Model

Suppose we have the basic NK model with sticky prices and log utility

xt = Et[xt+1]− (it − Et[πt+1]− rnt )] (17.13)

πt = κxt + βEt[πt+1] (17.14)

it = φπt (17.15)

where we have normalized the rate of time preference to ρ = 0.

Productivity follows an AR(1) process

at = ρaat−1 + ξt + εt−s (17.16)

so that the news shock is about tomorrow’s level of productivity.

The impulse response functions are shown below.
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Figure 17.4: NK model with “inflation nutter” – IRF w.r.t to news shock

The key idea here is again that output is demand determined. Hence, we have that the

income effect increases consumption and, hence, output. In other words, the news shock

positively shifts the labour demand function.

Note that there is a positive output gap. Indeed, this implies that there is an inefficiency.

The economy is producing too much before productivity increases in period 4.

Suppose we increase the reaction coefficient of monetary policy from φ = 1.5 to φ = 1000.

This means that the central bank does everything to counteract sticky prices. As the impulse

response functions show, we have that the news shock has zero impact on the economy.

Remark: The problem here is that the positive reaction to news about future productivity

arises from the fact that monetary policy reacts insufficiently to inflation. Setting φ → ∞

would fully stabilize the inflation and the output gap. This can be fixed, however, by

assuming that the central bank cannot observe the shocks directly or that there are shocks

(e.g. mark-up shocks to the Phillips curve) that imply a trade-off for the central bank when

reacting to inflation.

One can see this also analytically. Set ρa = 1. Since productivity follows a random walk,
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there is no forward-looking behaviour in terms of inflation and Et[πt+1] = 1.

Hence, we have that

xt = Et[xt+1]− (φκxt − rnt ) (17.17)

yt = at + Et[yt+1 − at+1]− φκ(yt − at) + Et[at+1]− at (17.18)

yt =
1

1 + φκ
Et[yt+1] +

φκ

1 + φκ
at (17.19)

yt = at +
1

φκ
εt (17.20)

since Et[yt+1] = at + εt. Therefore, as φ→∞, we have that the economy shows no reaction

to the news shock which is efficient here.

Remark: We have that inflation is given by

πt = κ(yt − at) =
κ

1 + φκ
εt (17.21)

so that inflation moves 1-1 with the news shock. Monetary policy thus dampens the infla-

tionary response to a news shock, as it dampens aggregate demand.

17.4.2 Dispersed Information and Noise

See below.

17.5 Literature

Lorenzoni (2011) – Annual Review of Economics

Beaudry & Portier (2004), (2006), (2007)

Christiano et al. (2010)
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Chapter 18

Belief Driven Business Cycles
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See notes by Frederic Tremblay on Lorenzoni (2009) AER.

18.2 Sentiments and Higher Order Beliefs

See Angeletos & La’O (2014) Econometrica
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See Reis and Mankiw & Reis
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See Veldkamp (2011) – Information Choice in Macroeconomics and Finance
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Near Rational Expectations

Woodford

172


