Economics 817

Advanced Macroeconomic Theory II

Assignment 5

(Due: Monday, April 3)

1. Consider the New Public Finance model with capital covered in the lecture notes. Assume that T = 2 and that there are only two idiosyncratic and two aggregate states each period (θ_L, θ_H) and (z_L, z_H) , both occurring with equal probabilities. The planner can observe output and consumption, but not the idiosyncratic shocks θ_1 and θ_2 .

There is an initial capital stock k_0 and capital depreciates fully. Government expenditures are set to 0 and production is described by a Cobb-Douglas production function

$$F(K_t, Y_t) = z_t K_t^{\alpha} N_t^{1-\alpha}$$

with $\alpha \in (0, 1)$. The per-period utility function is given by

$$\log c - \frac{1}{2} \left(\frac{y_t}{\theta_t} \right)^2$$

where $\beta \in (0, 1)$.

- (a) Set up the perturbed problem and find the social discount factor λ₂^{*} : (z₁, z₂) → IR₊.
 [Hint: Write out all equations for any possible perturbation given an aggregate state z₂.]
- (b) Find the capital tax scheme that implements the constrained efficient allocation.
- (c) Are all agents savings-constrained?
- (d) How would your answers change, if the idiosyncratic shock in t = 1 is perfectly persistent?

2. Consider the Pissarides model covered in the lecture notes. The planner's problem can be described by the value function

$$P(u) = \max_{\theta} ub + (1 - u)y - k\theta u + \beta P(u_{+1})$$

subject to

$$u_{+1} = u + (1 - u)\delta - um(1, \theta)$$

- (a) Show that a solution to the Bellman equation is given by $P(u) = a_0 + a_1 u$ and find the constants a_0 and a_1 .
- (b) Show that this solution is unique.
- (c) Suppose that the matching function is given by $M = v(1 e^{-u/v})$. How do changes in fixed costs k and in unemployment b affect market tightness in the efficient allocation and the distribution of surplus? Compare your results to the equilibrium conditions covered in the lecture notes.
- 3. Consider *m* sellers and *n* buyers. Suppose each buyer visits each seller with equal probability $\theta = 1/m$ like in an urn-ball experiment with replacement.
 - (a) What is the expected number of matches M(n,m)? [Hint: Find the probability for any seller that all buyers go elsewhere.]
 - (b) Suppose now that the ratio n/m stays constant. Show that the arrival rates $A_b = M(n,m)/n$ and $A_s = M(n,m)/m$ are decreasing in m.
 - (c) What happens if $m \to \infty$? Interpret your results in terms of the returns-to-scale of a matching function.