Assignment 5

(Due: Monday, April 3)

1. Consider the New Public Finance model with capital covered in the lecture notes. Assume that $T=2$ and that there are only two idiosyncratic and two aggregate states each period $\left(\theta_{L}, \theta_{H}\right)$ and $\left(z_{L}, z_{H}\right)$, both occurring with equal probabilities. The planner can observe output and consumption, but not the idiosyncratic shocks θ_{1} and θ_{2}.

There is an initial capital stock k_{0} and capital depreciates fully. Government expenditures are set to 0 and production is described by a Cobb-Douglas production function

$$
F\left(K_{t}, Y_{t}\right)=z_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}
$$

with $\alpha \in(0,1)$. The per-period utility function is given by

$$
\log c-\frac{1}{2}\left(\frac{y_{t}}{\theta_{t}}\right)^{2}
$$

where $\beta \in(0,1)$.
(a) Set up the perturbed problem and find the social discount factor $\lambda_{2}^{*}:\left(z_{1}, z_{2}\right) \rightarrow \mathbb{R}_{+}$. [Hint: Write out all equations for any possible perturbation given an aggregate state z_{2}.]
(b) Find the capital tax scheme that implements the constrained efficient allocation.
(c) Are all agents savings-constrained?
(d) How would your answers change, if the idiosyncratic shock in $t=1$ is perfectly persistent?
2. Consider the Pissarides model covered in the lecture notes. The planner's problem can be described by the value function

$$
\begin{aligned}
& P(u)=\max _{\theta} u b+(1-u) y-k \theta u+\beta P\left(u_{+1}\right) \\
& \text { subject to } \\
& \quad u_{+1}=u+(1-u) \delta-u m(1, \theta)
\end{aligned}
$$

(a) Show that a solution to the Bellman equation is given by $P(u)=a_{0}+a_{1} u$ and find the constants a_{0} and a_{1}.
(b) Show that this solution is unique.
(c) Suppose that the matching function is given by $M=v\left(1-e^{-u / v}\right)$. How do changes in fixed costs k and in unemployment b affect market tightness in the efficient allocation and the distribution of surplus? Compare your results to the equilibrium conditions covered in the lecture notes.
3. Consider m sellers and n buyers. Suppose each buyer visits each seller with equal probability $\theta=1 / m$ like in an urn-ball experiment with replacement.
(a) What is the expected number of matches $M(n, m)$? [Hint: Find the probability for any seller that all buyers go elsewhere.]
(b) Suppose now that the ratio n / m stays constant. Show that the arrival rates $A_{b}=$ $M(n, m) / n$ and $A_{s}=M(n, m) / m$ are decreasing in m.
(c) What happens if $m \rightarrow \infty$? Interpret your results in terms of the returns-to-scale of a matching function.

