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Macroeconomic Theory Thorsten Koeppl

Answer Key for Assignment 4

Answer to Question 1:

1. As per lecture 9, all variables in the model should be positively correlated with TFP

and output. This is consistent with the experience of the aggregates in business cy-

cles, historical episodes, and structural empirical estimates. Note that increasing the

intertemporal elasticity of substitution uniformly across consumption and leisure (e.g.

γ = η = 5) will yield a counterintuitive negative correlation between labour in response

to a positive technology shock. This is due to the strong income effect relative to the

substitution effect. Try it.

2. A common criticism against the standard RBC framework is that it relies on an unrea-

sonable degree of intertemporal substitution of leisure. In the data, changes in hours

worked are large relative to productivity fluctuations, in contrast with the general RBC

model. Setting γ = 5 and η = 0 increases the intertemporal elasticity of consumption

and makes utility linear in labour which corresponds to Hansen (JME, 1985) indivisi-

ble labor model. With indivisible labor, the aggregate willingness to substitute leisure

intertemporally is extremely high. Hence, with indivisible labor, the model exhibits

larger fluctuations in hours worked relative to productivity. Interestingly, this also im-

plies that θ will have no influence on the cyclical properties of the model when solved

using log-linerization methods.
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Answer to Question 2:

1. The household’s problem is given by

max
ct,xt,nt

E0

∞∑
t=1

βt

[
c1−σt

1− σ
+

(1− n)1−ν

1− ν

]
subject to

ct + xt = wtnt + rtkt for all t and zt

kt+1 = xt + (1− δ)kt

k0 and z0 given

where zt is the stochastic value of productivity. One can then set up the Lagrangian

L = E0

[ ∞∑
t=0

βt
[
c1−σt

1− σ
+

(1− n)1−ν

1− ν

]
+
∞∑
t=0

λt [wtnt + rtkt + (1− δ)kt − kt+1 − ct]
]

and derive the FOC

λt = βtc−σt

λtwt = βt(1− nt)−ν

λt = Et [λt+1 [rt+1 + 1− δ]]

ct + kt+1 = wtnt + rtkt + (1− δ)kt

which express the labour-leisure choice, the Euler equation and the budget constraint.

Solving we obtain

c−σt
(1− nt)−ν

=
1

wt

and

1 = βEt

[( ct
ct+1

)σ
(rt+1 + 1− δ)

]
The firm’s problem is entirely standard and we have

max
kt,nt

ztC
ω
t k

α
t n

1−α
t − rtkt − wtnt
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which gives the following first-order condition

rt = αztC
ω
t k

α−1
t n1−α

t = α
yt
kt

wt = (1− α)ztC
ω
t k

α
t n
−α
t = (1− α)

yt
nt

Importantly, both the firm and the household takes aggregate consumption as given.

This implies that the individual decision makers do not consider how their choice influ-

ence aggregate ouptut.

2. To derive the steady state equilibrium, we solve first for the equilibrium in terms of

output y. In a second step, we then determine the output level y.

Importantly, we set throughout c = C, but take the first-order conditions as derived in

part (a) of the question.1

First Step:

In steady state, the Euler equation is given by

1 = β(r + 1− δ)

where

r = α
y

k
.

Hence, we have for the capital output ratio

k

y
=

αβ

1− β(1− δ)
.

Market clearing is given by C + δk = y so that

C

y
= 1− δ

[
αβ

1− β(1− δ)

]
and labour input being given by

(1− n)ν

Cσ
=

1

(1− α) y
n

1If we had for example (a measure of) two households, we would have to adjust this condition to be 2c = C.
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or

(1− n)ν

n
=

(C
y

)σyσ−1

1− α
.

So far, we have expressed the steady state (k, n, C) as a function of output y.

Second Step:

We can now rewrite the production function to obtain

y = zCωkαn1−α

= z

(
C

y

)ω
yω+α

(
k

y

)α
n1−α

= yω+αz

(
1− δ

[
αβ

1− β(1− δ)

])ω (
αβ

1− β(1− δ)

)α
n1−α

Hence, we have two equations

y =

[
z

(
1− δ

[
αβ

1− β(1− δ)

])ω (
αβ

1− β(1− δ)

)α
n1−α

] 1
1−ω−α

and

y =

(1− n)ν

n

1− α(
1− δ

[
αβ

1−β(1−δ)

])σ
 1

σ−1

.

in (y, n) which we could solve numerically. We can then recover values for C, k and

prices from the other equations.

Remark 1: We need another restriction on parameters. For the question to make sense

we need that the production function is increasing in labour input. This is only the case

if

w + α < 1.

Remark 2: Note that the steady state production function exhibits increasing returns

to scale when expressed in terms of labour input since

1− α
1− w − α

> 1.
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Remark 3: One also needs to show that there exists at least one solution that is different

from n = 0. The first equation is increasing in n starting from 0. The second equation

is increasing in n if and only if σ < 1. We need to distinguish two cases.

For σ < 1, we have that the second function starts out at y = 0, but diverges for n→ 1.

Consequently, for there to be a steady state, the first function needs to increase fast

enough.

For σ > 1, we have that the second function diverges for y = 0 as n approaches 0 and

it goes to 0 as n→ 1. Hence, in this case there always must be a steady state.

The case where σ = 1 (and ν = 1) will be considered below.

3. The social planner takes into account that higher consumption increases output. As out-

put increases, so does income which can thus be used to finance increased consumption.

In other words, there is a demand externality where higher demand (or consumption)

can finance “itself” by increasing output and, thus, income.

The social planner solves the following maximization problem

max
ct,kt+1,nt

E0

∞∑
t=1

βt

[
c1−σt

1− σ
+

(1− n)1−ν

1− ν

]
subject to

ct = Ct

Ct + kt+1 = yt + (1− δ)kt for all t and zt

yt = ztC
ω
t k

α
t n

1−α
t

k0 and z0 given

Note that the planner takes into account now that aggregate consumption influences

output. Furthermore, he directly chooses output, consumption and capital taking as

given the feasibility constraint. To the contrary, the household took prices – and, hence,

his income as given – when choosing consumption. The Lagrangian is given by

L = E0

[ ∞∑
t=0

βt
[
c1−σt

1− σ
+

(1− n)1−ν

1− ν

]
+
∞∑
t=0

λt
[
ztc

ω
t k

α
t n

1−α
t + (1− δ)kt − kt+1 − ct

] ]
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which gives the following FOC

βtCσ
t = λt

(
1− ω yt

Ct

)
βt(1− nt)−ν = λt(1− α)

yt
nt

λt = Et

[
λt+1

(
α
yt+1

kt+1

+ 1− δ
)]

Ct + kt+1 = yt + (1− δ)kt

where we have directly expressed everything in terms of aggregate consumption. Hence,

the only equation that changes is the optimal consumption decision. This of course,

will influence the Euler equation and, thus, capital accumulation and, therefore, also

output and labour input.

For the optimal steady state, we still have

k∗

y∗
=

αβ

1− β(1− δ)
C∗

y∗
= 1− δ

[
αβ

1− β(1− δ)

]
.

This implies that the capital-output and consumption-output ratios are still constant

and the same as in the competitive equilibrium. Also, how output is related to labour

input is given by the same relationship as in the equilibrium (see part (b) above).

However, the labour-leisure choice has changed and is now given by

C−σ

(1− n)−ν
=

1− ω y
C

(1− α) y
n

which can be rearranged to give

(1− n∗)ν

n∗
=

(C
∗

y∗
)σ(1− ω y∗

C∗ )y∗(σ−1)

1− α

This implies that for any value of C/y, the right-hand side is lower. Consequently, n

has to increase which implies that output is larger in the optimal steady state than

in the equilibrium one. This is due to the demand externality. To conclude, while

consumption and capital are constant fractions of total output, the efficient level of

consumption, capital and output are higher than the ones in competitive equilibrium.
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4. The tax has to be designed in such a fashion as to equate the equilibrium steady state

output with the efficient one. This can be achieved by equating the intratemporal Euler

equations.

Suppose then that the household has to pay a tax τc for each unit of consumption. The

household’s budget constraint then becomes

ct(1 + τt) + xt = wtnt + rtkt

In steady state with σ = ν = 1, the intra-temporal Euler equation is given by

1− n
n

=
(1 + τc)

(1− α)

C

y
(0.1)

Recall that at optimal allocation, we have

1− n∗

n∗
=

(1− ω y∗

C∗ )

(1− α)

C∗

y∗
(0.2)

Comparing these two equations, we see that for τc = −ω y∗

C∗ we can achieve the efficient

allocation. This implies that individual consumption should be subsidized with the

subsidy being equal to the positive externality that individual consumption has on

output. Why? The right-hand side of this last expression is just the derivative of

output with respect to aggregate consumption. From part (b), we thus have

τc = ω

(
1− δ

[
αβ

1− β(1− δ)

])−1
.

5. The two figures compare the standard RBC model where ω = 0 and the model with a

demand externality where ω = 0.5.

One can make three important observations about the results. First, the shock is

amplified by the demand externality. Output, consumption and investment all increase

significantly. Labor input stays rougly constant upon impact – a fact of log utility –,

but remains higher with the demand externality. Second, the impact of the shock is

more persistent. Hence, the demand externality causes the shock to be felt longer in

the economy. Third, the shape of output is interesting. Output peaks after about 10

periods implying a hump-shaped response not present in the RBC model.
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Figure 1: ω = 0

Figure 2: ω = 0.5
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Answer to Question 3:

1. To find the optimal rate of capital utilization, we set up a social planner’s problem.

Below, we will compare it to a decentralized problem. The problem is given by

max
ct,kt+1,nt,ut

= E0

[
∞∑
t=0

βt
(

log ct +
(1− nt)1−ν

1− ν

)]
subject to

ct + xt = zt(utkt)
αn1−α

t ∀t and zt

kt+1 = xt + (1− δ(ut))kt ∀t and zt

δ(ut) = δuθt

k0 and z0 given

Plugging investments and depreciation into the market clearing conditions, we obtain

for the FOC

βt

ct
= λt

βt

(1− nt)ν
= λt(1− α)

yt
nt

α
yt
ut

= δθuθ−1t kt

− λt + Et

[
λt+1(1− δuθt+1 + α

yt+1

kt+1

)

]
= 0

Solving these equations, the optimal solution is given by

ct
(1− nt)ν

= (1− α)
yt
nt

ut =

(
α

δθ

yt
kt

) 1
θ

1 = βEt

[
ct
ct+1

(1− δuθt+1 + α
yt+1

kt+1

)

]
ct + kt+1 = (1− δuθt )kt + yt

where we have used feasiblity.
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2. The production function with the optimal rate of capital utilization is given by

yt = zt(utkt)
αn1−α

t

= zt

(( α
θδ
ztk

α−1
t n1−α

t

) 1
θ−α

kt

)α
n1−α
t

=
( α
θδ

) α
θ−α

z
θ

θ−α
t k

α(θ−1)
θ−α

t n
θ(1−α)
θ−α

t .

There are a few important insights. First, we should impose that θ > 1. This is

reasonable, since depreciation is a cost and, hence, it should increase convexly with

utilitzation.

Second, the production function is still CRS. This implies that the utilization of capital

has no direct influence on the returns from scaling the input factors.

Third, the productivity paramters has an exponent that is larger than 1. Hence, pro-

ductivity shocks will be amplified directly.

3. Let’s have a look at the FOC for capital utilization again. It is given by

uα−1αzkαn1−α = δθuθ−1

Holding n fixed, the LHS (RHS) is the marginal benefit (cost) of utilizing capital. For

any value ut < 1, the marginal costs are larger than the marginal benefits. Starting out

at u = 1 and decreasing capital utilization would increase output only if n increases. But

this cannot be optimal as the marginal product of labour falls with capital utilization.

Consequently, it would be optimal to set u = 1.

Remark: Admittedly, this was a silly question to ask. We should have θ ≥ 1 and any

sensible calibration implies that α < 1.
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4. From the FOCs, our steady state equations are

1 = β
(

1− δuθ + α
y

k

)
c

(1− n)ν
= (1− α)

y

n

u =
( α
θδ

y

k

)1/θ
c = y − δuθk

y = z(uk)αn1−α

We have 5 equations that solve for the four unknowns (c, k, n, u) and output y. Inter-

estingly, the Euler equation is almost identical to our earlier one, since

1 = β

(
1 +

(
θ − 1

θ

)
α
y

k

)
5. Problems:

1) DYNARE clearly has trouble finding a steady state for θ ≤ 1. The reason is that the

cost function is not strictly convex.

2) We cannot calibrate the model appropriately unless there is some B > 1 for weighing

leisure in the utility function. The reason is that in steady state

c

y
= (1− α)

1− n
n

which puts limits on the value of labour n which we think is usually around 20-30% of

time.

For the calibration, use standard values for (α, β) and the AR(1) parameters. The

preference parameters are set to 1 anyway. For δ, we choose a smaller value of 0.01.

This is by inspection of the steady state to get reasonable values for the steady state

values of capital utilization. The values below show these values in logs.
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Variable Steady State Value

y 0.420139

c 0.239816

n -1.10794

k 3.82172

x -1.38169

u -0.299114

The model steady state gives us a capital utilization of about 75%. This is a compromise

as the equilibrium depreciation rate per year of less than 4% is clearly too low. We would

think about 10% to be appropriate. Also, the capital utilization rate is seems too low.

Finally, the capital/output ratio is way off at about 30.

Note that I have calibrated B = 20! I have done this to get a reasonable value for n to

be close to 0.3 in steady state. In general, you may have trouble to get n ∈ [0, 1] if you

do not set an appropriate value for B. Note that B has no influence on the IRFs.

6. The IRFs are qualitatively the same as in the RBC model. In response to a positive pro-

ductivity shock, we have that both, investment and capital utilization increase. Hence,

the economy reacts on an intensive margin (using existing capital more) and an ex-

tensive margin (investing into more capital). Eventually, the economy will still reduce

existing capital and convert it into consumption.

The effects of the technology shock should be amplified through three channels. First,

we know from above that productivity shocks are amplified in this model realtive to the

RBC model. We have
θ

θ − α
= 1.2

for our calibration. Second, there is an additional, immediate effect through higher

capital utilization which can react immediately to the productivity shock. Third, the

elasticity of output to labour has changed since the exponent on labour is given by

α̂ =
θ(1− α)

θ − α
= 0.8
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0
0.001
0.002
0.003
0.004
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20 40 60 80 100
0
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0.002

0.0025

c

20 40 60 80 100
0
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0.001

0.0015
0.002

0.0025
0.003

k

20 40 60 80 100
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

x

20 40 60 80 100
-0.001

0
0.001
0.002
0.003
0.004
0.005

u

This is the elasticity of output with respect to changes in labour input. As capital

utilization increase, so does the marginal product of labour. This is captured by the

increased coefficient α̂. Consequently, output increases much stronger given the increase

in labour. This allows both consumption and investment increase more, too.

7. With indivisible labour, the intratemporal Euler equation becomes

B =
(1− α)

ct
zt(utkt)

αn−αt = (1− α)
yt
ctnt

Given that c
y

is estimated to be 0.75, α = 0.33, and we want the model to replicate the

hours worked to be equal to the long run average in the data – n = 1/3, from steady

state labour-leisure choice equation, we have

B = (1− α)
y

cn

=
1− 0.33

0.75
× 3 = 2.4

With linear labour, the parameter B does not matter for the impulse response function.

However, it influences the steady state. Below are the results for our calibration
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Variable Steady State Value

y 0.432459

c 0.252136

n -1.09562

k 3.83404

x -1.36935

u -0.299114

The figure clearly shows that the reaction of labour supply is much stronger, about 4

times as strong. Consequently, the output response is also larger, but only by a factor

of 2 due to less amplification through capital utilization.

Remark: Let’s look a decentralized version of this economy where households own the

capital, but only submit a fraction ut to firms that fully use this capital. Hence, house-

holds indirectly determine utilization and depreciation of the capital stock.

The constraint for the household is given by

ct + kt+1 − (1− δ(ut))kt ≤ wtnt + rt(utkt)
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The firm maximizes its profit with

max
kt,nt

ztk̃
α
t n

1−α
t − rtk̃t − wtnt

where k̃t = utkt in equilibrium. The interpretation is that the household rents out ut

per cent of its capital stock.

The FOCs yield

rt =
∂δ

∂ut
= δθuθ−1t

rt = α
yt
utkt

which is identical to the planner’s problem.

Remark: Let’s look an economy where household submit all their capital to firms, but

the firms decide upon how much of the capital to utilize. We assume that the rental of

capital is at a rental rate rt and a compensation for the (variable) capital utilization.

The households budget constraint is given by

ct + kt+1 − kt = (rt + δ(ut))kt + wtnt

The firm now chooses also the utilization rate ut. This can be thought of renting all

machines, but driving them only at ut%.

max
kt,nt,ut

ztk̃
α
t n

1−α
t − rtk̃t − wtnt − δ(ut)kt

The FOC for the firm yields

rt + δ(ut) = α
yt
kt

∂δ

∂ut
= δθuθ−1t kt = α

yt
ut

which gives the identical choice for u as in the planner’s problem.

Finally, the payment to households is given by

(rt + δ(ut)) = α
yt
kt
kt = αyt

as before.
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Answer to Question 4:

1. Define the vector

zt = (τt, gt, yt)

where τt is real tax revenue, gt is real government expenditure and yt is real GDP.

The structural VAR can be transformed in a reduced form VAR by premultiplying the

regression equation with B0
−1 to obtain

zt = B0
−1B1zt−1 + · · ·+ B0

−1Bpzt−p + B0
−1wt

= A1zt−1 + · · ·+ Apzt−p + ut.

2. The first step is to take nominal values for τt and gt and detrend them with a GDP

deflator to obtain real values. One can work directly with real GDP data. The data

will not be stationary. Hence, one should at least detrend the variables by taking log

differences to obtain a VAR in growth rates.

The second step is to determine the lag length p from the data. There are various

criteria available.

The third step is to estimate the parameter matrices Ai by OLS.

Remark: A complication arises from the fact that the three time series are cointegrated.

Hence, one should think about correcting for this cointegration relationship before run-

ning a VAR analysis. Ideally, this would be done in the form of a VECM.

3. In general, we can put restrictions to identify the VAR according to

Aut = Bwt

The question asks you to put restrictions on A = B0 which is often called the “A

model”. Since we do not normalize the original covariance matrix of the residuals in

the VAR, we now need to put 1 on the diagonals and find three more restrictions.
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In general, one can put restrictions on both matrices (“AB model”). I find it more

convenient to restrict the matrix B = B0
−1 in a particular way. This is often called

the “B model” and is closer to a recursive identification. One can use the normalized

covariance matrix for the shocks and, hence, one needs only the three restrictions for

identification. Of course, all models are related and can be mapped into each other.

Identifying restrictions:

1) Current tax revenue and expenditure do not influence each other.

2) The elasticity of tax revenue to GDP is given by 1.16 (see OECD 2015). This means

that a 1% increase in GDP increases taxes by 1.16% contemporaneously.

Remark: The first restriction assumes that a shock to tax policy or to expenditures

do not contemporaneously influence the other variable. This seems reasonable since

I strip out interest payments from government expenditures. Also, we allow for any

contemporaneous influence of shocks to GDP to these variables and vice versa. This

seems like a benign assumption.

This yields the following matrix to be estimated for the structural VAR

B0
−1 =


· 0 1.16

0 · ·

· · ·


4. We can now use this matrix to figure out the structural IRFs. They are given by

B0
−1wt

for the first period and then by the Ai matrices and the values for zt−i for the future

periods.

The estimated matrix is given by

B0
−1 =


1.31 0 1.16

0 1.37 0.19

−0.27 −0.18 0.6
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5. I first plot the IRF to a one standard deviation shock in the growth rate of tax revenue.

There is a negative impact on GDP and a lagged impact on expenditures.

Next, I look at a shock to expenditures. Interestingly, there is a negative impact on

GDP first, but in the medium run, this turns into a stimulus effect after about three

quarters. Tax revenue remains flat until it increases after 5 quarters.

Finally, I look at a GDP shock. Tax revenue increases (but this is kind of assumed in

the model unless expenditures fall dramatically) and expenditure falls after one quarter,

but then increase as well. There seems to be a persistent effect on tax revenue for quite

some time.
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