
Economics 815 Winter 2020

Macroeconomic Theory Thorsten Koeppl

Answer Key for Assignment 2

Answer to Question 1:

1. The household maximizes utility taking the interest rate and profits as given

max
c1,c2,s

u(c1, c2) =
c1−γ1

1− γ
+ β

c1−γ2

1− γ
subject to

c1 + s ≤ y

c2 ≤ rs+ Π

where s denotes savings by the household and Π is the profit from the firm.

Remark: Interpreting savings as investment, we could write here r + (1 − δ) for the

return after depreciation. Then, 1 + r is the gross return on investment. Using δ = 1,

we get the above formulation.

2. The firm’s problem is to maximize profits taking the interest rate as given

f(k) = kα − rk.

3. A competitive equilibrium for this economy is an interest rate r and an allocation

(c1, c2, s, k) such that

(a) households maximize utility taking the interest rate and profits as given

(b) firms maximize profits taking the interest rate as given

(c) markets clear

c1 = y − k

c2 = kα

s = k.

1



4. From the firm’s decision problem, we obtain

f ′(k) = αkα−1 = r.

¿From the consumer’s problem we obtain

c−γ1 = λ1

βc−γ2 = λ2

−λ1 + rλ2 = 0.

This yields the intertemporal Euler equation(
c2
c1

)γ
= βr.

Now we can use the market clearing conditions with y = 1 to obtain(
kα

1− k

)γ
= βαkα−1.

5. Using the parameters of the model we can solve the following non-linear equation for k

kαγ − (1− k)γβαkα−1 = 0.

The solution is given by

k∗ = 0.23963

c∗1 = 0.76037

c∗2 = 0.65142

r∗ = 0.81553.

6. The graph below shows how the equilibrium values vary with the elasticity of intertem-

poral substitution γ.

7. The interpretation is straightforward. The coefficient γ expresses both risk aversion

and the inverse of the elasticity of intertemporal substitution. A higher γ implies a

lower elasticity, which means that households have a stronger preference to smooth
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consumption over time. The only way for consumers to smooth their consumption is to

invest into capital that is productive tomorrow. Consequently, capital is larger which

lowers its marginal product tomorrow and, hence, the interest rate. Hence, the larger

γ, the lower the interest rates will be.

Note that there is a general equilibrium effect. Lower interest rates – for any given γ –

will discourage consumption growth, and, hence savings. This will dampen the effect of

a change in γ on consumption growth. The effect would not be present, if interest rates

were constant due to a constant return in capital or savings. Then, a larger γ would

decrease consumption growth one-for-one.

Answer to Question 2:

1. Denote today’s probability distribution across states as pt and tomorrow’s probability

distribution across states as pt+1. Since today’s state is y, we have pt = (1, 0).

We have

pt+1 = ptΠ.
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Hence, the probability of y is given by 1 ·0.8+0 ·µ and the one of ȳ by 1 ·0.2+0 ·(1−µ),

so that pt+1 = (0.8, 0.2).

2. Let p∗ = (p, q) denote the long-run stationary distribution.

The long-run stationary distribution solves

p∗ = p∗Π.

This yields the following equations

p = 0.8p+ µq

q = 0.2p+ (1− µ)q

1 = p+ q.

Note that the first and second equations are linearly dependent, so that we can use only

one of the equations. We can use the third equation with p ∈ (0, 1) to obtain q = 1− p.

Therefore, p = µ
0.2+µ

and q = 1 − µ
0.2+µ

for µ ∈ (0, 1]. For example, when µ = 1, the

long-run distribution is given by p = 5
6

and q = 1
6
.

A special case is given by µ = 0, where we obtain a stationary distribution given by

p∗ = (0, 1). This means that ȳ is an absorbing state.

Answer to Question 3:

One could start off with a brute force approach and maximize the following Lagrangian

E0

[
c1−γ0

1− γ
+ β

c1−γ1

1− γ
+ β2 c

1−γ
2

1− γ

]
+ λ0

[
y0 − c0 + q0HaH − q0LaL − q0HHaHH − q0LHaLH − q0HLaHL − q0LLaLL

]
+ λH

[
ȳ − cH + a1H + q1HH(aHH − ãHH) + q1HL(aHL − ãHL)

]
+ λL

[
y − cL + +a1L + q1LH(aLH − ãLH) + q1LL(aLL − ãLL)

]
+ λHH [ȳ − cHH + ãHH ]

+ λLH [ȳ − cLH + ãLH ]

+ λHL
[
y − cHL + ãHL

]
+ λLL

[
y − cLL + ãLL

]
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Some comments. Note that the state in period 0 is known, so that we have simply used

the notation y0. Next, AD securities that pay out in period 2 are retraded at a price q1 in

period 1. Hence, these assets pay no dividend in period 1, but have a price at its payoff. The

constraints express the net trades in these securities. Finally, in period 2, all AD securities

have zero prices as the world ends.

Alternatively, one could look at a sequential problem and work backwards. For example,

suppose the state is H in period 1. Then, we have

max
c,a

E1

[
c1−γH

1− γ
+ β

c1−γ2

1− γ

]
subject to

cH = ȳ + q1HHaHH + q1HLaHL

cHH = ȳ + aHH

cHL = y + aHL

and a similar problem for the state L. Once again, we can solve a period 0 problem taking

the period 1 as given.

It is important to realize that some of the period 2 AD securities have a price of 0 in period 1

conditional on that state in that period. This has been taken into account in the formulation

of the problem already. For example, q1LH = 0 if the state in period 1 is H. But q1LH > 0 if

the state in period 1 is L.

1. The FOCs yield

c−γ0 = λ0

β

2
c−γi = λi for i = H,L

β2

4
c−γij = λij for i, j = H,L

λ0q
0
i = λi for i = H,L

λ0q
0
ij = λiq

1
ij for i, j = H,L

λiq
1
ij = λij for i, j = H,L
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We can now get rid of the Lagrange multipliers to obtain an expression for every asset

price. For example, period 0 asset prices for AD securities in period 1 are given by

q0i =
β

2

(
c0
ci

)γ
Using the market clearing condition, we have that

q0H =
β

2

(
y0
ȳ

)γ
q0L =

β

2

(
y0
y

)γ
Similarly, we have for the AD securities in period 2

q0HH =
β2

4

(
y0
ȳ

)γ
q0HL =

β2

4

(
y0
y

)γ
q0LH =

β2

4

(
y0
ȳ

)γ
q0LL =

β2

4

(
y0
y

)γ
Note that – not incidentally – q0HH = q0LH and q0HL = q0LL. What matters is only the state

in the second period. This shows that one could simply trade (and re-trade) long-run

AD securities that pay out always only in the high state or low state.

Next, in period 1, we need to distinguish between the state we are in. If the state is H,

we have

q1HH =
β

2

(
cH
cHH

)γ
=
β

2

(
ȳ

ȳ

)γ
=
β

2

q1HL =
β

2

(
cH
cHL

)γ
=
β

2

(
ȳ

y

)γ
q1LH = q1LL = 0

Equivalently, we have in state L

q1LL =
β

2

q1LH =
β

2

(
y

ȳ

)γ
q1HL = q1HH = 0.
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2. The bond that matures at t = 1 has the price

q0b,1 = q0H + q0L =
β

2

[(
y0
ȳ

)γ
+

(
y0
y

)γ]
The bond that matures at period 2 has a state-contingent price in period t = 1. Why?

Its price depends on the income the household receives in period 1.

Hence, we have

qHb,2 = q1HH + q1HL =
β

2

[
1 +

(
ȳ

y

)γ]
qLb,2 = q1LH + q1LL =

β

2

[
1 +

(
y

ȳ

)γ]
To obtain the price of the bond in period 0, we need to find a portfolio that replicates

the payoff in period 1. Hence, we have

q0b,2 = q0H
β

2

[
1 +

(
ȳ

y

)γ]
+ q0L

β

2

[
1 +

(
y

ȳ

)γ]
=
β2

2

[(
y0
ȳ

)γ
+

(
y0
y

)γ]
Not by coincidence(!), this is equal to q0HH + q0HL + q0LH + q0LL.

Remark: In general, we can work backwards when pricing assets when market are com-

plete (think of a full set of AD securities so that we can achieve any payoff). This works

as the Euler equation just substitutes out for different MRS and probabilities across

time. This should be evident from the FOC and from the algebra when solving the

question correctly. The prices of the AD securities simply “pick up” the right MRS

state-by-state.

3. We have now a long-lived asset. This asset pays out a dividend in period 1 and 2 that

is state-dependent. Hence, the tree’s payoffs are given by d1 + p1 in the first period and

by d2 in the second period. Note that the tree is traded ex dividend, i.e., without the

fruit attached.

Now, we work backwards again. The price of the tree in period 1 is given by

p`(H) = q1HH · 1 + q1HL · 2 =
β

2
+ β

(
ȳ

y

)γ
p`(L) = q1LH · 1 + q1LL · 2 =

β

2

(
y

ȳ

)γ
+ β
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The price in period 0 is then given by

p`(0) = q0H(dH + p`(H)) + q0L(dL + p`(L)).

Plugging in the appropriate values, we get

p`(0) = q0H(1 + p`(H)) + q0L(2 + p`(L)) =

(
β

2
+
β2

2

)[(
y0
ȳ

)γ
+ 2

(
y0
y

)γ]

Remark: This looks like discounted cash-flow pricing. The first term acts like a discount

factor. The second term is expressing the dividend weighted by a risk factor that is

given by the MRS between period 0 consumption and consumption in the low or high

state in any period.

4. To price the orange tree, we just apply the formulas above, since the only difference is

given by the dividend process. We optain for the period 1 prices

po(H) = q1HH · 2 + q1HL · 1 = β +
β

2

(
ȳ

y

)γ
po(L) = q1LH · 2 + q1LL · 1 = β

(
y

ȳ

)γ
+
β

2

The price in period 0 needs to be

po(0) =

(
β

2
+
β2

2

)[
2

(
y0
ȳ

)γ
+

(
y0
y

)γ]
5. We first compare the two bonds. Their prices are given by

q0b,1 =
β

2

[(
y0
ȳ

)γ
+

(
y0
y

)γ]
q0b,2 =

β2

2

[(
y0
ȳ

)γ
+

(
y0
y

)γ]
The only difference between the two bonds is the price of time, β. This is intuitive. Both

bonds pay out 1 unit of consumption in every state when they mature. Hence, buying

and holding the bond only yields a difference in consumption across time. Interestingly,

the second bond is not risk-free when bought or sold in period 1. Hence, there is
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intertemporal risk with respect to the risk-free rate which is given by the fact that

qHb,2 6= qLb,2.

Next, we compare the prices for the two trees. We have that

p` − po
β
2

+ β2

2

=

(
y0
y

)γ
−
(
y0
ȳ

)γ
> 0

Why is the lemon tree worth more? It pays out more as a dividend in the low state

than in the high state. Hence, it insures against consumption risk and is a better hedge

against risk and, thus, more valuable.

One really cannot compare the risk-free bond and the two trees as they have a very

different payoff structure.

WARNING: I flipped the lemon and the orange tree. You can just flip the answers.

6. We first find the conditional risk-free rate in period 0. This is just given by the risk-free

bond we found earlier. Hence, we have that

1

1 + rf (H)
= q0b (H) =

β

2

[(
ȳ

ȳ

)γ
+

(
ȳ

y

)γ]
1

1 + rf (L)
= q0b (L) =

β

2

[(
y

ȳ

)γ
+

(
y

y

)γ]
Since the two states happen with probability 1/2, the unconditional risk-free rate in

period 0 is given by
1

2
[(1 + rf (H)) + (1 + rf (L))] =

1

β

Next, we are calculating the conditonal return on the orange tree (equity) with pays the

endowment as the dividend. Note that uncertainty is iid. Hence, the expected payoff

in t = 1 is independent of the state in t = 0. Thus,

E[p1 + d1] =
1

2
(p1(H) + p1(L)) +

3

2

The price in period 0 depends on the price in the current state. Hence, we have (ex

dividend) for the expected return in period 0

(1 + E[re(H)]) =
E[p1 + d1]

p0(H)
=

1
2
(2 + 2γ) + ((1/2)γ + 1/2) + 3/β

(1 + β)(2 + 2γ)

(1 + E[re(L)]) =
E[p1 + d1]

p0(L)
=

1
2
(2 + 2γ) + ((1/2)γ + 1/2) + 3/β

(1 + β)2(1/2 + (1/2)γ)
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Combining these two terms we obtain for unconditional return on equity

(1 + E[re(0)]) =
1

2

( 1
2
(2 + 2γ) + ((1/2)γ + 1/2) + 3/β

1 + β

)(
1

(2 + 2γ)
+

1

2(1/2 + (1/2)γ)

)
= Υ

The unconditional equity premium is the difference between the two expected returns

or

E[re(0)]− rf = Υ− 1

β

Unfortunately, it is a somewhat ugly expression.

Remark: The graphs below show some comparative statics of the equity premium with

respect to the coefficient of relative risk aversion γ and β.

Increasing γ and decreasing β generates larger equity premiums. Using standard param-

eter values and data on equity returns and the risk-free rate, however, yield an equity

premium that is too low compared to the data and a risk-free rate that is too high.

Hence, one needs to change our basic asset pricing model to fit the data. One way to

do that is to change equity risk. Another one is to decrease the risk-free rate through

modelling credit market imperfections.

7. A call option gives the right to buy the tree at the strike price. Since the strike price is

the price of the tree in the low state, the payoff structure for the option is given by

C1(H) = max{po(H)− po(L), 0}

C1(L) = max{po(L)− po(L), 0} = 0
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Hence, we have that

C(H) = β

(
ȳγ − yγ

ȳγ

)
+
β

2

(
ȳγ − yγ

yγ

)
> 0

Using the price for the AD security that pays out one unit of consumption in period 1

in state H, the price of the call in period 0 is given by

C0 = q0(H) · C(H)

=

(
y0
ȳ

)γ [
β2

2

(
ȳγ − yγ

ȳγ

)
+
β2

4

(
ȳγ − yγ

yγ

)]
=
β2

4

[(
y0
ȳ

)γ
+

(
y0
y

)γ
− 2

(
y0y

ȳ2

)γ]

Remark: An option is just a state-contingent claim and can be replicated (and priced)

via AD securities.

Answer to Question 4:

1. The government’s budget constraints are given by

g1 = τ1w1n1

g2 = τ2w2n2

g = g1 + g2

Note that the absence of borrowing and lending does not allow the government to run

a (temporary) deficit or surplus. However, by varying τ1 vs. τ2 – and, henceforth, g1

and g2 – it can shift the tax burden across periods.

2. Households take the wage w, profits (Π1, Π2), as well as government policy (g, τ1, τ2)

as given and solve the following problem

max
c1,c2,n1,n2

c1−γ1

1− γ
+ θ

(1− n1)
1−η

1− η
+

c1−γ2

1− γ
+ θ

(1− n2)
1−η

1− η

subject to

c1 ≤ (1− τ1)w1n1 + Π1

c2 ≤ (1− τ2)w2n2 + Π2
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The firm takes wages as given and solves

max
nt

nαt − wtnt

A competitive equilibrium for a government policy (g, τ1, τ2) is then given by prices wt

and an allocation (c1, c2, n1, n2) such that:

• households maximize utility taking the policy, profits and prices as given

• firms maximize profits taking wages as given

• markets clear, i.e.

c1 + g1 = nα1

c2 + g2 = nα2

Note that we have not put any restrictions on government policy. This implies that for

values of g that are too high, there might not exist any equilibrium. For the remainder

of the question, we will restrict ourselves to feasible gov’t policies where an equilibrium

exists.

3. The FOC for the firm’s problem is given by

wt = αnα−1t

which is independent of taxes.

The FOCs for the household’s problem are

(1− n1)
η

cγ1
=

θ

(1− τ1)w1

(1− n2)
η

cγ2
=

θ

(1− τ2)w2

for the first and the second period.

Remark: For simplicity, there is no direct intertemporal choice for the household. One

could still allow for borrowing and lending and derive an intertemporal Euler equation

which is given by (
c2
c1

)γ
= (1 + r).
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This equation would simply pin down the interest rate as a function of taxes τ1 and τ2.

Since the government cannot borrow or lend and there is a representative household,

there cannot be any savings or borrowing. Hence, the problem in each period can be

viewed separately – except for the government’s constraint of having to raise enough

taxes for a total of g.

4. Since α = 1, the production function is linear so that

w1 = w2 = 1.

This also implies that profits are zero because of constant returns-to-scale in production.

Using the budget constraint in the first-order condition of the household, we obtain

1− nt
(1− τt)ntwt

=
θ

1− τt

so that

nt =
1

1 + θ
.

From the budget constraint, we then have that consumption is given by

ct =
1− τt
1 + θ

The government budget constraint is given by

gt = τtnt =
τt

1 + θ

so that we have in equilibrium

ct =
1− gt(1 + θ)

1 + θ
.

The solution yields the following insights. First, labour supply n is independent of the

tax rate τ and, consequently, total output does not depend on it. This is a consequence

of log utility where income and substitution effects cancel out exactly. Higher taxes (or

gov’t consumption) implies a fall in income and a fall in (effective) wages relative to

the normalized price of consumption. Hence, there is a negative income effect, but a
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positive substitution effect for the labour supply choice; however, the two effects exactly

cancel each other. Second, wages do not depend on labour supply, since the marginal

product of labour is constant and normalized to 1. Third, consumption reacts 1-1 to

changes in taxes over time.

5. The welfare maximizing policy given a total expenditure of g across periods is given by

τ1 = τ2 or, equivalently g1 = g2. This is simply a consequence of tax smoothing across

periods. The intuition is that it is optimal to smooth distortions across time.

To verify this intuition, we can use the fact g2 = g − g1 and the equilibrium conditions

from part (d) to obtain an indirect utility function for the household that is given by

log
(
1− g1(1 + θ)

)
+ log

(
1− (g − g1)(1 + θ)

)
where he have neglected all constant terms. Differentiating with respect to g1 we obtain

– again neglecting multiplying constants

g − 2g1 = 0

as a first-order condition which confirms our intuition.

Remark: In general, one would need to solve a so-called Ramsey problem. A social

planner chooses the tax policy to maximize the welfare of the household taking into

account as a constraint (!) that taxes lead to a particular equilibrium in the economy.

For the case above, the constraint has been used directly in the indirect utility function

which is the objective of the Ramsey planner.

6. Note first that the problems in period 1 and 2 are identical. The only difference is the

level of government spending gt. Hence, we can use the household’s first-order condition,

the expression for the wage rate and the budget constraint to define n as a function of

15



τ ,

(1− n)η

cγ
=

θ

(1− τ)w

(1− n)η

(nα − τwn)γ
=

θ

(1− τ)αnα−1

θ(nα − ταnα)γ

(1− n)η(1− τ)αnα−1
− 1 = 0

where the second step uses the fact that the consumer owns the firm and obtains its

profits. This is equivalent – in equilibrium – to obtain all the output minus the taxes

paid on labour income.

Hence, computing all the variables boils down to solving again one non-linear equation

in one unknown n for all possible values of n. Note that this (implicitly) pins down the

solution for all (feasible) gov’t expenditures in period t. A sample program in Matlab

looks like this:1

clear all

tau=0:0.01:0.99;

for i=1:length(tau);

taui=tau(i);

n_star = fsolve(@(n) foc(n,taui),0.5);

nstar(i) = n_star(1);

end;

cstar = (nstar.^.5).*(1 - tau/2)

wstar = 1./(2*nstar.^.5)

ustar = cstar.^(1-2)/(1-2) + (1-nstar).^(1-2)/(1-2)

plot(tau,nstar)

plot(tau,cstar)

1Frederic Tremblay provided the code for solving the problem.
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plot(tau,wstar)

plot(tau,ustar)

First, one defines a vector for all possible values of τ . Then, one runs a loop over all

these values. The loop involves two steps. First, it solves the non-linear equation using

fsolve. Second, it stores the result in a vector for the equilibrium n. The remainder

of the program simply calculates all other variables as a function of n and plot these

against τ .

The graphs below show labour supply, consumption, wages and utility as a function of

tax rates in any period.
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Labour supply is falling as a function of taxes due to distortions in after tax wages,

while wages themselves increase with taxes. The reason for the latter result is that the

marginal product of labour increases with lower labour input in production. Consump-

tion decreases as total income decreases with taxes. Overall utility is also decreasing in

taxes.

7. The government revenue in each period gt is given by

gt = τtwtnt

From part (e), we know that utility is maximized by setting g1 = g2 because the dis-

tortions are minimized. Hence, total output is also maximized by equal taxation across

period and, consequently, doing so maximizes tax revenues. Since the problem is sym-

metric in both periods, we can express the total revenue g using the equation above

as
g

2
= τwn

or

g = τ
√
n

Using the equilibrium labour supply n∗(τ) computed in part (f) we obtain that we have

to solve

max
τ

τ
√
n∗(τ)

We can adjust the computer code for part (f) to obtain the revenue maximizing tax as

follows2

g = tau.*nstar.^.5;

[gmax, imax] = max(g);

taustar = tau(imax);

2Frederic Tremblay provided the code for solving the problem.
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The graph below shows government revenue as a function of a flat tax τ across periods.

The figure exhibits a so-called “Laffer curve” where at first revenues are increasing in

the tax rate, but as the tax rate grows they start declining. The reason is that the

tax base (labour supply) decreases with higher tax rates – eventually overpowering the

effect of higher rates on revenue. Government revenue is maximized at τ ≈ 0.85 with

g ≈ 0.4270 and n ≈ 0.0663.
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