
Economics 815 Winter 2019

Macroeconomic Theory Thorsten Koeppl

Answer Key for Assignment 1

Answer to Question 1:

The first two graphs show raw Canadian GDP and detrended GDP by log-first differences

(growth rates).
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The next three graphs below show Canadian GDP filtered for different values of the Hodrick-

Prescott Filter. The first one gives a linear trend, while the other two are very similar, both

in trends and cycle.

The next two graphs show the periodogram of the original data series and for the log-

differenced data (growth rates). Note that the scale on the x-axis is given by frequencies

that range from 0 to 2π and, consequently, is measured in radians.

We clearly see that the raw data pick up the lowest frequency which is the trend, while

the log-differenced data have very much a flat, uniform distribuiton indicating weight on all

frequencies.

For the HP filtered data, we only plot the periodograms for λ = 1600. The plot on the left side

shows the trend component, while the plot on the right side shows the cyclical component.

Note that the x-axis has now been converted into “frequency” in terms of the number of
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Hodrick−Prescott Filter of gdp_ts
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Figure 1: Linear Trend – λ = 100000
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Figure 2: Business Cycle Frequency – λ = 1600

cycles in the period. Hence, 1 means the lowest frequency (“one cycle”) and 75 means the

highest frequency (“two quarter cycle”).

The HP filter emphasizes fequencies that are in the range of 4 and 6 cycles during the last

roughly 40 years. This is sometimes not helpful. To compare the cyclical component between

λ = 1600 and λ = 400, we convert the x-axis again to reflect the length of a cycle or the

“period” which is simply given by the reciprocal of the frequency. Note that we rescale the

x-axis to reflect the number of quarters for a cycle (i.e., we multiply by 148).

With λ = 1600, we pick up the length of 30 quarters as the most prominent frequency. This

2



Hodrick−Prescott Filter of gdp_ts
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Figure 3: Higher Frequency – λ = 400
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points to about 8 years for a cycle. Reducing the smoothing parameter for the trend to

λ = 400 we should give more weight to shorter periods or higher frequency movements. We

see two effects. Cycles now appear most prominent at 21 quarters or about 5 years with more

weight given to even shorter cycles. Bottomline: detrending and smoothing matters!

Answer to Question 2:

1. Each household i solves the following problem

max
ci1,c

i
2

ln ci1 + βi ln ci2

subject to

ci1 + si ≤ yi1

ci2 = (1 + r)si + yi2.

We can then derive an intertemporal budget constraint that is given by

ci1 +
ci2

1 + r
≤ yi1 +

yi2
1 + r

Taking a first-order condition, we obtain for both households

ci2
βici1

= (1 + r).

Using this in the budget constraint we obtain

ci1 +
βci1(1 + r)

1 + r
= yi1 +

yi2
1 + r
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so that household i’s demand for consumption in the first period and second period is

being equal to

ci1 =

(
1

1 + β

)[
yi1 +

yi2
1 + r

]
ci2 =

(
β

1 + β

)[
(1 + r)yi1 + yi2

]
.

Then, we have from market clearing that∑
i

cit =
∑
i

yit = 1

for both periods t. Using the expression for cit, we obtain that the equilibrium interest

rates is given by
1

β
= 1 + r.

Hence, we have that

c11 = c12 =
1

1 + β

c21 = c22 =
β

1 + β
.

Both households have a flat consumption profile; i.e., they fully insure each other against

the fluctuation in income. This is done by the second household borrowing an amount

s2 = 1−
(

1

1 + β

)
.

The level of consumption for both households is, however, different. A household’s net

present wealth depends on when he receives his endowment.

2. When β = 1, there is no discounting. Hence, when households receive their endowment

does not matter. Consequently, r = 0, and c11 = c12 = c21 = c22 = 1
2
. That is, households

share consumption equally among themselves and across periods.

When β →∞, households value consumption tomorrow infinitely more than consump-

tion today. In this case, 1 + r → 0, and c11 = c12 → 0, while c21 = c22 → 1. Receiving

one’s endowment early becomes useless.
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When β → 0, households only value current consumption. In this case, 1 + r → ∞,

and c11 = c12 → 1, c21 = c22 → 0. Household 1 is not willing to lend to household 2 at any

positive interest rate.

Answer to Question 3:

We define the gain in utility from a payoff as

∆ = u(1)− u(0)

The lottery is a single, initial coin flip that determines whether consumption occurs before or

after the odd period. Comparing the two utility gains, we obtain

1

2

∞∑
t=1

β2t−1∆ +
1

2

∞∑
t=1

β2t+1∆ Q
∞∑
t=1

β2t∆

Hence,

∞∑
t=1

1

2
β2t−1 +

∞∑
t=1

1

2
β2t+1 Q

∞∑
t=1

β2t

1

2

(
1

β
+ β

)
·

(
∞∑
t=1

β2t

)
Q

∞∑
t=1

β2t

(β − 1)2 Q 0

Therefore, the person prefers lottery (ii) over lottery (i) for any β ∈ (0, 1). People prefer

gambles over time rather than certain spikes in consumption in odd periods.

Remark: This follows straight from Jensen’s inequality. We can consider this to be a sequence

of payoffs that compare 1/2βt−1 + 1/2βt+1 to βt. The function f(t) = βt is strictly convex.

Hence, we get

E[βt] > βE[t]

Remark: We could also consider a sequence of coin flips taking place every even period to

determine immediate consumption of 1 or delayed consumption of 1. This would yield the
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following distribution of utility every even period for t > 1

u(2) with prob. 1/4

u(1) with prob. 1/2

u(0) with prob. 1/4

The first period t = 1 has u(1) and u(0) with equal probability. The answer will then depend

on u(2)− u(0) as well as β. Try it!

Answer to Question 4:

1. Let at be the assets the consumer carries into period t. His budget constraint is then

given by

ct + at+1 = yt + (1 + r)at

In period t+1, we have that in every state a similar budget constraint holds. Weighting

by the probability of the state in t+ 1, we then obtain that

Et[ct+1 + at+2] = Et[yt+1 + (1 + r)at+1]

Et[ct+1 + at+2] = Et[yt+1] + (1 + r)at+1

because (1 + r)at+1 is a constant. Hence, we have that

(1 + r)at = ct − yt +

(
1

1 + r

)
Et[ct+1 − yt+1 + at+2]

Iterating forward, using the law of iterated expectations and an appropriate limit con-

dition, we obtain

∞∑
s=0

(1 + r)−sEt[ct+s] = (1 + r)at +
∞∑
s=0

(1 + r)−sEt[yt+s]

We can now use the Euler equation Et[ct+s] = ct to obtain

1 + r

r
ct = (1 + r)at +

∞∑
s=0

(1 + r)−sEt[yt+s]

ct = rat +
r

1 + r

∞∑
s=0

(1 + r)−sEt[yt+s]
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The AR(1) income process yields through repeated substitution, applying the law of

iterated expectations and using the fact that Et[εt+1] = 0,

Et[yt+s] = ρsyt

so that

∞∑
s=0

(1 + r)−sEt[yt+s] = yt

∞∑
s=0

(
ρ

1 + r

)s

= yt

(
1 + r

1 + r − ρ

)
Combining, we obtain for the consumption function

ct = rat +

(
r

1 + r − ρ

)
yt

Consumption is given by a fraction of wealth plus a fraction of current income.

2. The consumption function in the previous period is given by

ct−1 = rat−1 +

(
r

1 + r − ρ

)
yt−1

We now use the budget constraint in period t− 1

ct−1 + at = yt−1 + (1 + r)at−1

to obtain

ct−1 =

(
r

1 + r

)
(ct−1 + at − yt−1) +

(
r

1 + r − ρ

)
yt−1

or

ct−1 = rat +

(
r

1 + r − ρ

)
ρyt−1

This allows us to substitute for rat in the consumption function to obtain

ct = ct−1 +

(
r

1 + r − ρ

)
(yt − ρyt−1) = ct−1 +

(
r

1 + r − ρ

)
εt

3. Note that both ct − ct−1 and εt are random variables. Hence, we have

V (ct − ct−1) =

(
r

1 + r − ρ

)2

V (εt)
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If ρ→ 0, all income shocks are temporary and the income shock follows a random walk.

Consumption growth would then be least volatile.

If ρ→ 1, all income shocks are permanent. Hence, consumption would react 1-1 to the

shock. Consumption growth would be most volatile.

One could estimate r and ρ from the data. A common result is that consumption varies

less than what this model implies. This puzzle is often referred to as “excess smoothness

of consumption”.
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