Economics 815 Winter 2019

Macroeconomic Theory Thorsten Koeppl

Answer Key for Assignment 1

Answer to Question 1:

The first two graphs show raw Canadian GDP and detrended GDP by log-first differences
(growth rates).
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The next three graphs below show Canadian GDP filtered for different values of the Hodrick-
Prescott Filter. The first one gives a linear trend, while the other two are very similar, both
in trends and cycle.

The next two graphs show the periodogram of the original data series and for the log-
differenced data (growth rates). Note that the scale on the x-axis is given by frequencies
that range from 0 to 27 and, consequently, is measured in radians.

We clearly see that the raw data pick up the lowest frequency which is the trend, while
the log-differenced data have very much a flat, uniform distribuiton indicating weight on all
frequencies.

For the HP filtered data, we only plot the periodograms for A = 1600. The plot on the left side
shows the trend component, while the plot on the right side shows the cyclical component.

Note that the x-axis has now been converted into “frequency” in terms of the number of
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Figure 1: Linear Trend — A = 100000

Hodrick-Prescott Filter of gdp_ts

200 250 300 350 400 450 500

T T T T
1980 1990 2000 2010

Cyclical component (deviations from trend)

T T T T
1980 1990 2000 2010

Figure 2: Business Cycle Frequency — A = 1600

cycles in the period. Hence, 1 means the lowest frequency (“one cycle”) and 75 means the
highest frequency (“two quarter cycle”).

The HP filter emphasizes fequencies that are in the range of 4 and 6 cycles during the last
roughly 40 years. This is sometimes not helpful. To compare the cyclical component between
A = 1600 and A = 400, we convert the x-axis again to reflect the length of a cycle or the
“period” which is simply given by the reciprocal of the frequency. Note that we rescale the
x-axis to reflect the number of quarters for a cycle (i.e., we multiply by 148).

With A = 1600, we pick up the length of 30 quarters as the most prominent frequency. This
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Figure 3: Higher Frequency — A = 400
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points to about 8 years for a cycle. Reducing the smoothing parameter for the trend to
A = 400 we should give more weight to shorter periods or higher frequency movements. We
see two effects. Cycles now appear most prominent at 21 quarters or about 5 years with more

weight given to even shorter cycles. Bottomline: detrending and smoothing matters!

Answer to Question 2:

1. Each household i solves the following problem

i i
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We can then derive an intertemporal budget constraint that is given by
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Taking a first-order condition, we obtain for both households
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Using this in the budget constraint we obtain
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so that household i’s demand for consumption in the first period and second period is
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Then, we have from market clearing that
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for both periods ¢. Using the expression for ¢, we obtain that the equilibrium interest

being equal to

rates is given by
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Both households have a flat consumption profile; i.e., they fully insure each other against

the fluctuation in income. This is done by the second household borrowing an amount
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The level of consumption for both households is, however, different. A household’s net

present wealth depends on when he receives his endowment.

. When g =1, there is no discounting. Hence, when households receive their endowment
does not matter. Consequently, r =0, and ¢} = ¢j = ¢ = ¢ = 1. That is, households

share consumption equally among themselves and across periods.

When 8 — oo, households value consumption tomorrow infinitely more than consump-
tion today. In this case, 1 +7 — 0, and ¢f = ¢5 — 0, while ¢ = ¢3 — 1. Receiving

one’s endowment early becomes useless.



When § — 0, households only value current consumption. In this case, 1 +r — oo,
and ¢f = ¢y — 1, ¢} = ¢2 — 0. Household 1 is not willing to lend to household 2 at any

positive interest rate.

Answer to Question 3:

We define the gain in utility from a payoff as
A =u(l) —u(0)

The lottery is a single, initial coin flip that determines whether consumption occurs before or

after the odd period. Comparing the two utility gains, we obtain
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Therefore, the person prefers lottery (ii) over lottery (i) for any g € (0,1). People prefer

gambles over time rather than certain spikes in consumption in odd periods.

Remark: This follows straight from Jensen’s inequality. We can consider this to be a sequence
of payoffs that compare 1/28""! + 1/281 to 8. The function f(t) = S is strictly convex.
Hence, we get

B3] > g

Remark: We could also consider a sequence of coin flips taking place every even period to

determine immediate consumption of 1 or delayed consumption of 1. This would yield the



following distribution of utility every even period for ¢t > 1
u(2) with prob. 1/4
u(1) with prob. 1/2
u(0) with prob. 1/4

The first period ¢ = 1 has u(1) and «(0) with equal probability. The answer will then depend
on u(2) —u(0) as well as 5. Try it!

Answer to Question 4:

1. Let a; be the assets the consumer carries into period ¢. His budget constraint is then

given by
Ctt a1 =y + (1 + r>at

In period t+ 1, we have that in every state a similar budget constraint holds. Weighting
by the probability of the state in ¢t 4+ 1, we then obtain that
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because (1 + r)a;41 is a constant. Hence, we have that
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[terating forward, using the law of iterated expectations and an appropriate limit con-

dition, we obtain
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We can now use the Euler equation E;[c;;s] = ¢ to obtain
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The AR(1) income process yields through repeated substitution, applying the law of

iterated expectations and using the fact that E;[e; 1] = 0,

E, [yt+s] = Py

so that

i(l + 1) EYers] = i (1 i T>S = Yy (%)

s=0 s=0

Combining, we obtain for the consumption function

r
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Consumption is given by a fraction of wealth plus a fraction of current income.

2. The consumption function in the previous period is given by
n r
C_1 =Tay_ — |y
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We now use the budget constraint in period ¢t — 1
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to obtain
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This allows us to substitute for ra; in the consumption function to obtain
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3. Note that both ¢; — ¢;_; and ¢, are random variables. Hence, we have
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If p — 0, all income shocks are temporary and the income shock follows a random walk.

Consumption growth would then be least volatile.

If p — 1, all income shocks are permanent. Hence, consumption would react 1-1 to the

shock. Consumption growth would be most volatile.

One could estimate r and p from the data. A common result is that consumption varies
less than what this model implies. This puzzle is often referred to as “excess smoothness

of consumption”.



