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Lecture XII

Policy Analysis with Macro Data

Consider the following example

yt = αgt + γxt + εyt

gt = βyt + εgt

where εit and xt are uncorrelated.

The first equation describes a model that links output growth yt to
government expenditure growth gt and some control variable xt.

The second equation captures a reaction function for fiscal policy.

Goal:

We would like to estimate the impact of fiscal stimulus (εgt) taking
into account a fiscal multiplier.

Problem:

Can we interpret correlations as causal relationships?

Can we say something about the size of the fiscal multiplier?
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The Identification Problem

Solving the model, we get

gt =
βγ

1 − αβ
xt +

β

1 − αβ
εyt +

1

1 − αβ
εgt

yt =
γ

1 − αβ
xt +

1

1 − αβ
εyt +

α

1 − αβ
εgt

1) Estimating the model would allow us to pin down β (i.e., the
reaction function), but not the fiscal multiplier α

1−αβ . We need some

other (identifying) assumption to find α.

2) A positive correlation between yt and gt can mean anything:

I Economist A (α = 0, β > 0) – growth increases in gov’t spending

I Economist B (α > 0, β > 0) – gov’t spending spurs growth
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VAR Analysis

Consider the model

yt = µ+ Γ1yt−1 + · · · + Γpyt−p + ut

which is an autoregression with several lags involving vectors y.

For theoretical exposition, we can always stack vectors of longer lags[
yt

yt−1

]
=

[
µ
0

]
+

[
Γ1 Γ2

I 0

] [
yt−1
yt−2

]
+

[
νt
0

]
to obtain a first-order VAR with redefined variables

ỹt = µ̃+ Γỹt−1 + ũt

These are reduced form VARs, since today’s variables only depend
on predetermined variables and today’s disturbances.

We can use them for forecasting.

Queen’s University – ECON 815 4



Lecture XII

Forecasting

For that purpose, we transform the VAR into its MA representation
(presuming that Γ is stable)

yt = µ+ Γyt−1 + ut

= µ+ ΓLyt + ut

= [I − ΓL]−1(µ+ ut)

= Γ(L)(µ+ ut)

= ȳ +

∞∑
i=0

Γiut−i

We can use OLS to estimate Γ and use bootstrapping to obtain
standard errors.

Interpretation:

The matrices Γi determine IRFs with respect to innovations/shocks
ut. An element is given by γml(i) which gives the deviation of ym,t
from its mean due to a one-time “shock” in ul,t−i.
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The Identification Problem Revisited

1) Macro variables are correlated contemporaneously with each other.

2) We think of “shocks” as related to specific variables rather than
purely random innovations.

A macroeconomic model has the structure

B0yt = B1yt−1 + wt

yt = [B0 − B1L]−1wt

where all structural shocks wt

I have mean zero

I are serially uncorrelated

I and E[wt, w
′
t] = Σw = I is a diagonal matrix which we normalize

to have unit variances.

B0 are contemporaneous correlations among variables.
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In order to estimate the parameters of this model, we map the model
to a reduced form VAR.

B0yt = B1yt−1 + wt

yt = B−10 B1yt−1 + B−10 wt

yt = A1yt−1 + ut

Hence, we can estimate
A1 = B−10 B1

from a reduced form VAR and find the covariance matrix

Σu = E[utut
′] = B−10 ΣwB−1′0 = B−10 B−1′0

Conclusion:

Identifying a VAR is equivalent of choosing a unique matrix of B0

(or B−10 see below) that determines the contemporaneous interactions
among variables.
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SVAR – Restrictions

Since we have normalized the variances of structural shocks, we have

Σu = B−10 B−1′0

There are n2 parameters. The covariance matrix is symmetric so that
we have only n(n+ 1)/2 independent equations and, thus, we need
n(n− 1)/2 additional restrictions on B−10 (from economic reasoning).

Note that different restrictions will yield different IRFs with a unit
innovation in the structural shock being interpreted as a one standard
deviation shock.

How do we find n(n− 1)/2 more restrictions?

I recursive structure and ordering (Cholesky decomposition)

I “ad-hoc” restrictons on contemporaneous variables (from theory)

I long-run neutrality restrictions (Blanchard and Quah)
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Recursive Identification

Order the variables such that variables higher in the order are
determined before variables lower in the order.

Shocks to higher variables contemporaneously influence lower
variables, but not the other way around.

This is equivalent to assuming that B−10 is lower triangular.

This gives us n(n− 1)/2 restrictions.

This is the Cholesky Decomposition of the covariance matrix Σu.

We can estimate A1 from a reduced form VAR and run the IRF

B−10 wt =


b11 0 . . . . . . 0
b21 b22 0 . . . 0
...

. . .
. . .

. . . 0
bn1 bn2 . . . . . . bnn


 w1

...
wn
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Short-run Restrictions

Theory can tell us about the structure of the matrix B0 directly.

Consider again the covariance matrix of shocks E[wtw
′
t] = Σw where

we do not (!) normalize the variances.

Using wt = B0ut, we then have

Σw = B0ΣuB
′
0

We now impose that the diagonal entries are 1 for B0 which leaves us
again with n(n− 1)/2 restrictions to be chosen.

Note that these now correspond directly to the contemporaneous
relationships between the variables.

One needs to rescale the IRFs by the standard deviation of the
structural residual wt.
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Long-run Restrictions

We can also use long-run neutrality restrictions from economic theory.

Define B(1) ≡ B0 − B1 = B0 (I − A1) ≡ B0A(1).

The long-run impact matrix is given by(
I + B−10 B1 + . . .

)
B−10 =

(
B0(I − B−10 B1)

)−1
= B(1)−1 = Θ(1)

on which we will place enough restrictions (e.g., Colesky) for
identificaton.

1) We can estimate the long-run matrix from A1 and Σu via

A(1)−1ΣuA(1)−1′ = Θ(1)−1Θ(1)−1′

where we impose sufficient restrictions on Θ(1).

2) Since Σu = B−10 B−1′0 , we can recover short-run restrictions from

B−10 = A(1)Θ(1)
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Application – Productivity and Hours for CAN

Data for Canada (1/1981-3/2013):

I corr(GDP, Hours) = 0.696

I corr(GDP, Prod) = 0.491

I corr(Prod, Hours) = -0.285

Hours move countercyclical relative to (labour) productivity.

In the RBC model, we need a very small Frisch elasticity of the
labour supply (η large), so that the income effect dominates the
substitution effect.

Or we need other shocks (such as gov’t policy or preference shocks)
that give rise to a sufficiently strong negative comovement between
measured labour productivity and hours.
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Empirical Analysis using VARs

Model – VAR in hours nt and (labour) productivity zt

We log first-difference productivity and hours to get stationarity

I ∆zt = log zt − log zt−1
I ∆nt = log nt − log nt−1

Reduced-form VAR:(
∆zt
∆nt

)
=

[
γ11 γ12
γ21 γ22

](
∆zt−1
∆nt−1

)
+

(
ν1t
ν2t

)

We can estimate this VAR and use it for forecasting.

To investigate the empirical relationship between hours and
productivity, we need to make identification assumptions.
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Recursive Identification

Reduced form VAR with one lag

I coefficient matrix

Γ =

[
0.0686 0.16273
0.4527 0.6087

]
I Identifying restriction

B−10 =

[
b11 0
b21 b22

]

We interpret ε1t as a technology shock and ε2t as everything else
(what?) that has no direct contemporaneous impact whatsoever on
productivity.
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IRFs – Recursive VAR
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Long-run Restrictions

We call some shocks supply or technology shocks and others demand
shocks. We allow variables to affect each other contemporaneously
and obtain correlations conditional on these shocks.

Identification Assumptions:

1) Shocks are orthogonal and normalized to 1 in variance.

2) Productivity is influenced in the long-run only by technology
shocks (long-run restriction).

This means that we have the following MA representation(
∆zt
∆nt

)
=

[
Θ11(L) Θ12(L)
Θ21(L) Θ22(L)

](
ε1t
ε2t

)
= Θ(L)εt

with restriction Θ12(1) = 0 or Θ(1) being lower triangular.
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Evidence from Canadian Data

Step 1 – Reduced form VAR from above to obtain A(1)

Step 2 – Structural VAR:

I restrict long-run impact matrix Θ(1) to be lower triangular

Θ(1) =

[
0.0044 0
0.0051 0.0082

]
I calculate the contemporaneous impact matrix

B−10 =

[
0.0033 −0.0013
0.0000 0.0032

]
I calculate cond. correlations

I corr(∆zt,∆nt|1) = 0.128

I corr(∆zt,∆nt|2) = −0.579
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