ECON 815 Introduction

Winter 2020

What is the course about?

Modern macroeconomics is about understanding cyclical fluctuations.

Important for:

- ▶ forecasting
- analyze policy changes
- design optimal policy responses to shocks

Main issue:

The first task merely requires an econometric (reduced form) toolkit. The second requires a theoretical (structural) model. The third requires a combination of the two.

Goal

We develop (bare bone?) models for how the economy works.
Problem: We abstract from many (relevant?) issues.

2) We see how these models work empricially.

<u>Problem</u>: There aren't many (long) time series.

Good news is that we agree at least on the questions!

- ▶ What drives the moments in the data?
- ▶ Why are shocks persistent and amplified?
- ▶ What can policy do about it?

Macroeconomics? A history of disasters ...

1800s: Bank Panics

 \longrightarrow emergence of national currency and bank regulation

1873-1896: Long Depression \longrightarrow emergence of gold standard

1929-1939: Great Depression \longrightarrow emergence of Keynesian theories

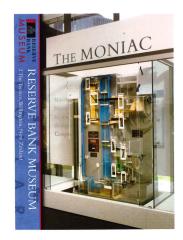
1970s/80s: Stagflation \longrightarrow emergence of DSGE

2008: Great Recession \longrightarrow ???

Question: How much can these disasters be attributed to policy mistakes?

What is DSGE about?

 ${f D}_{ynamic}$ – how an economy evolves throughout time ${f S}_{tochastic}$ – in response to shocks ${f G}_{eneral}$ – at a high level of aggregation ${f E}_{quilibrium}$ – based on (optimal) decision rules.

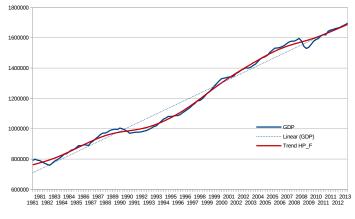

Key Aspects:

- ▶ The core is a structural, microfounded model.
- Due to non-linearities, the model is solved in an approximate way.
- The model is then compared to the data taking the model "seriously".
- ▶ It is thus a synthesis of reduced form and structural approaches.

Overview

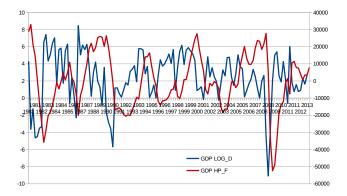
- Part I: Two-period economies
- Part II: The Long-run
- Part III: RBC Model
- Part IV: VARs
- Part V: New Keynesian Model
- Part VI: Monetary Policy

How? The old way ...


The MONIAC – by A.W. Phillips

... and the new way!

DYNARE


Check it out! - www.dynare.org

What is the cycle?

Canadian Real GDP – 1981:1 - 2013:3

<u>Issue:</u> GDP is I(1) and we want to explain fluctuations around a trend.

Fluctuations in Real GDP – 1981:1 - 2013:3

Issue: There are many ways to "detrend" the data.

Detrending

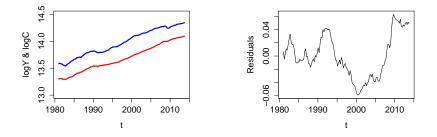
1) <u>First-differences</u>

- growth rates are given by $\frac{\dot{y}_t}{y_t} = \frac{d \ln y_t}{dt}$
- ▶ or: $\frac{y_t y_{t-1}}{y_{t-1}}$ which can be approximated by $\Delta \ln y_t$
- ▶ tends to emphasize very high frequencies

2) <u>HP filter</u>

decompose series into a trend and a cyclical component

$$y_t = y_t^g + y_t^c$$


least square estimator

$$\min_{y_t^g} \sum_{t=0}^T (y_t - y_t^g)^2 + \lambda \sum_{t=0}^T \left((y_{t+1}^g - y_t^g) - (y_t^g - y_{t-1}^g) \right)^2$$

► for quarterly business cycle data set $\lambda = 1600$ for 2-3 year frequencies (serial correlation)

Variables move together!

Example: Consumption and Output

Canadian Real GDP (blue) and Consumption (red) – 1981:1 - 2013:3 Residuals from Cointegration

<u>Issue:</u> What matters is the deviation from the long-run relationship.

3) Cointegration

- \blacktriangleright Take two time series, y_t and x_t .
- They are cointegrated whenever there exists some γ s.th. $\epsilon_t = y_t \gamma x_t$ is I(0).
- ▶ If the variables are cointegrated, they have a common trend.
- ▶ Then simply differencing variable by variable would lose information.
- We want to purge the common trend from the variables to study short-term deviations from that trend.

Different Frequencies

Unemployment - 1980:1 - 2017:3

<u>Issue:</u> There are patterns at particular frequencies that can be evaluated further by spectral analysis.

Using Seasonal Adjustment

Unemployment (seasonally adj.) - 1980:1 - 2017:3

Spectral Analysis

Question: Which frequencies matter most?

Our data are usually described in the time domain as

$$Y_t = \sum_{j=0}^{\infty} \psi_j \epsilon_{t-j}$$

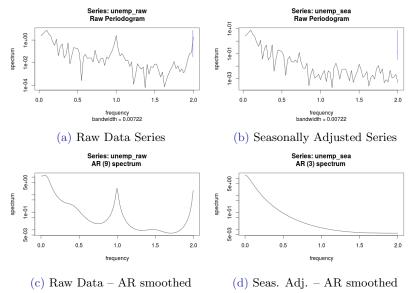
The goal is to estimate the coefficients ψ_j which tell us how the data are correlated across time.

We can also view the data in the **frequency domain** as approximated by wave-like functions

$$Y_{t} = \sum_{j=1}^{k} A_{j} \sin(2\pi\nu_{j}t) + B_{j} \cos(2\pi\nu_{j}t)$$

The coefficients represent how the data are correlated at different frequencies ν_j .

Periodogram


A **periodogram** decomposes the total variance of a time series into autocorrelations at different frequencies.

By default, one plots the cycle in units of radians per unit of observation:

- ▶ highest frequency is 2π
 - $\equiv 0.5$ cycles per quarter
 - $\equiv 2$ quarters per cycle
- lowest frequency is $2\pi/T$ $\equiv 1/T$ cycles per quarter $\equiv T$ quarters per cycle

Examples: (i) white noise; (ii) AR(1) process

Using Spectral Analysis

Second Moments

"Classic" Approach of DSGE:

- ▶ calibrate to the data
- ▶ solve the model
- ▶ simulate the model
- compare moments (or IRFs to shocks)

Mean Annual Growth, Standard Deviation and Covariance with Output (Canada 1981:1 - 2013:3)

	Mean	$\frac{SD}{SD_Y}$	-4	-3	-2	-1	0	1	2	3	4
Output	2.35	1	0.03	0.21	0.31	0.55	1	0.55	0.31	0.21	0.03
Cons.	2.43	0.72	-0.13	0.21	0.24	0.32	0.53	0.31	0.26	0.15	0.07
Inv.	2.92	5.12	-0.01	0.09	0.32	0.47	0.59	0.48	0.15	0.00	-0.07
Hours	1.22	0.97	-0.08	0.07	0.25	0.53	0.70	0.61	0.35	0.18	0.09
Prod.	1.13	0.76	0.15	0.19	0.10	0.05	0.41	-0.05	-0.04	0.05	-0.08

Stylized RBC Facts

- ▶ stable long-run trend growth (balanced growth path)
- ▶ investment fluctuates more than output
- consumption is smooth relative to output
- hours and output fluctuate about the same (but avg. weekly hours fluctuate much less)
- productivity is procyclical, but fluctuates somewhat less than output
- real wages vary less than productivity and avg. compensation not correlated with output

Conclusion:

Technology shocks should play a role with investment and labor input being the main propagating mechanism.

Aggregate demand is far less important, unless something else than technology shocks matter.