Assignment 1

(Due: Thursday, January 29 - Drop Box by 3pm)

1. Each period a generation with size N_{t} is born, where the population grows (shrinks) at a constant rate $n>1(n<1)$. All generations have an endowment of y of the single consumption good when young and no endowment when old. Preferences for each generation t are given by

$$
u\left(c_{t}(t), c_{t}(t+1)\right)=\sqrt{c_{t}(t)}+\sqrt{c_{t}(t+1)}
$$

with preferences for the initial old given by $u\left(c_{-1}(0)\right)=\sqrt{c_{-1}(0)}$.
(a) Derive the set of feasible allocations for this economy in terms of the population growth rate n. Draw a diagram properly labeled showing the feasible set.

Set now $n=2$, i.e. the population doubles each generation.
(b) Show that the stationary allocation $\left(c_{1}, c_{2}\right)=\left(\frac{3}{4} y, \frac{1}{2} y\right)$ is not Pareto optimal. [Hint: Find a feasible allocation that pareto-dominates this allocation.]
(c) Set $y=1$. Find all stationary Pareto optimal allocations for this economy.
(d) Find a stationary transfer scheme $\left(\tau_{1}, \tau_{2}\right)$ that achieves the best allocation for all generations except the initial old.

Suppose now that the young have access to a storage technology that yields a gross return $r>0$; i.e. if 1 unit of the good is invested today, it yields r units tomorrow.
(e) In the absence of transfers, find the optimal storage of resources by each generation. For which values of r do all generations except the initial old prefer storage over the transfer scheme that you have found in part (d)?
(f) Suppose the transfer scheme lasts only for T periods. How does your anwser to part (e) change, if this is publicly announced? What if noone anticipates that the scheme ends at T ? Explain your answer.
2. Consider an OG environment with preferences equal to

$$
u\left(c_{t}(t), c_{t}(t+1)\right)=\ln c_{t}(t)+\ln c_{t}(t+1)
$$

for all generations except the initial old whose preferences are given by $u\left(c_{-1}(0)\right)=\ln c_{-1}(0)$. Assume that the population doubles over time, i.e. $n=2$ and normalize $N_{-1}=1$. Each member of a generation has an endowment of $y_{1}=2$ when young and $y_{2}=1$ when old. There is an initial stock of debt equal to b_{-1} owned by the initial old generation.
(a) Write down the balanced budget condition for the government using the interest rate $r(t)$ on debt it issues in period t.
(b) Set up the household's decision problem and find the FOC in terms of the interest rate $r(t)$ on debt.
(c) Find a stationary (in consumption) perfect foresight equilibrium. What is the initial amount of debt b_{-1}, the sequence of debt levels and the sequence of interest rates associated with this equilibrium?
(d) Find an equivalent lump-sum tax scheme that yields the same stationary perfect foresight equilibrium.
(e) Use an excel program to plot the evolution of debt and interest rates when $b_{-1}=1.01 b_{-1}^{S S}$. Is such a debt policy feasible? [Hint: Use the algorithm described in class.]
(f) Plot now a graph for the evolution of debt, interest rates and consumption allocation when $b_{-1}=0.99 b_{-1}^{S S}$. Does such a policy enhance welfare for all generations?
3. Consider again an OG environment with preferences as given in the previous question. The endowment across generations is now given by $y_{1}=y_{2}=1$. The size of the intial old generation is again normalized, $N_{-1}=1$, and there is population growth equal to $n=2$.
(a) Find the optimal allocation for this economy neglecting the initial old generation. [Hint: Solve the Pareto-problem in class.]

Suppose that there are no taxes and no debt in this economy. A new government makes the following proposal: issue an amount of debt b_{0}, use the proceeds $b_{0} /(1+r)$ to make a one-time transfer to the initial old and then role over the debt forever. The government also promises to keep the per-capita debt level constant over time.
(b) If the government needs a majority to vote for the proposal, will it be adopted? [Hint: Find the stationary equilibrium with debt starting in period 0 and compare the utility for all generations of the equilibrium with the utility under autarky.]

Suppose now that the government instead proposes to issue debt b_{0}, keep this level of debt constant over time, but also to tax old people τ_{2} to finance the building of useless pyramids. The revenue from the tax is given by $\tau_{2} N_{t-1}$ so that overall consumption is given by $N_{t} g=$ $\tau_{2} N_{t-1}$. The government also specifies that the proceeds of issuing debt will be used as a one-time transfer for the construction of a statue.
(c) Set up the government budget constraint and derive the households net-present value budget constraint. [Hint: You may neglect the special nature of the tansfer arising from the initial debt issuance.]
(d) Show that for a stationary equilibrium we still need $(1+r)=n$. [Hint: The total resources available for private consumption are now $N_{t} y_{1}+N_{t-1}\left(y_{2}-\tau_{2}\right)$.]
(e) Find the stationary equilibrium given by c_{1}, c_{2} and b_{0} in terms of the tax τ_{2}.
(f) How large can the government set its tax τ_{2}, if it needs a majority to vote for its policy?
(g) Can the policy be implemented, if the government needs a $2 / 3$ plus one vote majority? Explain your answer.

