ECON 442

Public Debt

Winter 2015

Gov't Debt

- interest-bearing asset $B(t)$
- discount bond with face value $B(t)$
- (net) real interest $r(t)$ determined in equilibrium
- HH lend $b(t) /(1+r(t))$ in t to get $b(t)$ in $t+1$

Taxes in period t :

- lump sum
- $\tau_{1}(t)$ on young
- $\tau_{2}(t)$ on old

Gov't policy is given by $\left(B(t), \tau_{1}(t), \tau_{2}(t)\right)$.

Gov't Budget Constraint

Accounting relationship: Expenditure $=$ Revenue

$$
B(t-1)=\frac{B(t)}{1+r(t)}+N_{t} \tau_{1}(t)+N_{t-1} \tau_{2}(t)
$$

In per capita terms:

$$
\frac{1}{n} b(t-1)=\frac{b(t)}{1+r(t)}+\tau_{1}(t)+\frac{1}{n} \tau_{2}(t)
$$

A gov't policy is feasible, if it satisfies this budget constraint.

Savings Functions

Generation t 's problem when old is $c_{t}(t+1)=y_{2}+b(t)-\tau_{2}(t+1)$.
Generation t's problem when young:

$$
\begin{aligned}
& \max _{c_{t}(t), c_{t}(t+1), b(t)} u\left(c_{t}(t), c_{t}(t+1)\right) \\
& \text { subject to } \\
& \quad c_{t}(t)+\frac{b(t)}{1+r(t)}=y_{1}-\tau_{1}(t) \\
& c_{t}(t+1)=y_{2}+b(t)-\tau_{2}(t+1)
\end{aligned}
$$

Take current taxes, current interest rates and expected future taxes $\tau_{2}(t+1)$ as given.

Gov't bond allows the young generation to save.

Solution:

$$
\begin{aligned}
\frac{u^{\prime}\left(c_{t}(t)\right)}{\beta u^{\prime}\left(c_{t}(t+1)\right)} & =1+r(t) \\
c_{t}(t)+\frac{c_{t}(t+1)}{1+r(t)} & =y_{1}+\frac{1}{1+r(t)} y_{2}+\tau_{1}(t)+\frac{1}{1+r(t)} \tau_{2}(t+1) \equiv y_{\tau}
\end{aligned}
$$

Savings function is given by

$$
b(t)=s\left(\left(1+r(t), y_{\tau}\right)\right)
$$

What matters is the interest rate and the (expected) NPV of (after-tax) life-time wealth y_{τ}.

Definition of Equilibrium

Definition: A (rational expectations) equilibrium is given by a sequence of allocations $\left(c_{t}(t), c_{t}(t+1), b(t)\right)$ and interest rates $r(t)$ such that for a given level of gov't policy $\left(B(t), \tau_{1}(t), \tau_{2}(t)\right)$
(i) households maximize their utility taking interest rates and the gov't policy as given
(ii) markets clear, i.e

$$
\begin{aligned}
N_{t} c_{t}(t)+N_{t-1} c_{t-1}(t) & =N_{t} y_{t}(t)+N_{t-1} y_{t-1}(t) \\
N_{t} b(t) & =B(t)
\end{aligned}
$$

Case 1 - No Debt

Suppose there is no debt, $b(t)=0$ for all t

$$
\tau_{1}(t)+\frac{1}{n} \tau_{2}(t)=0
$$

Recall the budget constraints:

$$
\begin{aligned}
c_{t}(t) & =y_{1}+\tau_{1}(t) \\
c_{t-1}(t) & =y_{2}+\tau_{2}(t)
\end{aligned}
$$

Adding these constraints we obtain

$$
\begin{aligned}
N_{t} c_{t}(t)+N_{t-1} c_{t-1}(t) & =N_{t}\left(y_{1}+\tau_{1}(t)\right)+N_{t-1}\left(y_{2}+\tau_{2}(t)\right) \\
c_{t}(t)+\frac{1}{n} c_{t-1}(t) & =y_{1}+\frac{1}{n} y_{2}
\end{aligned}
$$

We can achieve any allocation via lump-sum taxes.

Case 2 - Only Debt

Suppose there are no lump-sum taxes

$$
\begin{aligned}
N_{t} \frac{b(t)}{1+r(t)} & =N_{t-1} b(t-1) \\
\frac{1}{1+r(t)} b(t) & =\frac{1}{n} b(t-1)
\end{aligned}
$$

In a stationary equilibrium, we have

$$
\begin{aligned}
\frac{u^{\prime}\left(c_{1}\right)}{\beta u^{\prime}\left(c_{2}\right)} & =1+r(t) \\
c_{1}+\frac{1}{1+r(t)} c_{2} & =y_{1}+\frac{1}{1+r(t)} y_{2} \\
c_{1}+\frac{1}{n} c_{2} & =y_{1}+\frac{1}{n} y_{2}
\end{aligned}
$$

Hence: In equilibrium $1+r(t)=n$. Interesting!
This requires a constant level of debt, given by $c_{2}=y_{2}+b^{*}$.

Non-stationary Equilibria

Consider some arbitrary initial level of debt $b(-1)$.
Step 1: This pins down

$$
c_{-1}(0)=y_{2}+b(-1)
$$

Step 2: Market clearing gives $c_{0}(0)$

$$
c_{0}(0)+\frac{1}{n} c_{-1}(0)=y_{1}+\frac{1}{n} y_{2}
$$

Step 3: Balanced budget yields

$$
\frac{1}{n} b(-1)=\frac{b(0)}{1+r(0)}
$$

Step 4: The household problem now yields two equations in two unknowns $c_{0}(1)$ and $r(0)$.

- Budget constraint when young

$$
\begin{aligned}
c_{0}(1) & =y_{2}+b(0) \\
& =y_{2}+\left(\frac{1+r(0)}{n}\right) b(-1)
\end{aligned}
$$

- Optimal choice of household is given by

$$
\frac{u^{\prime}\left(c_{0}(0)\right)}{\beta u^{\prime}\left(c_{0}(1)\right)}=1+r(0)
$$

Step 5: Calculate $b(0)=b(-1) \frac{1+r(0)}{n}$
Step 6: Iterate over time.

There are three possible scenarios.

- For some initial level of debt, $b(-1)=b^{*}$, interest rates are constant at $1+r=n$ and debt is stationary over time.
- For $b(-1)<b^{*}$, debt is decreasing over time and so are interest rates.
- For $b(-1)>b^{*}$, debt explodes and so do interest rates.

In the last case, there is a corner solution such that $c_{t}(t)=y_{1}$ and $c_{t}(t+1)=y_{2}$ for all t.

Why? Eventually households would not be willing to hold the total stock of debt and the incentive to buy debt would unravel backwards.

