ECON 442 The OG Model

Queen's University

Winter 2015

Public Economics

- ▶ Why is a government needed?
- ▶ How should government policies be structured?
- ▶ What are the problems with implementing policies?

First question is key.

- public goods and externalities
- ▶ other market failures (information)
- redistribution (normative?)
- ▶ behavioral problems ("paternalistic" or "pathological")

This Course

For the most part we will rely on the **Overlapping Generations** Model.

This model has a fundamental structure where government matters for transferring resources intertemporally.

Two basic questions:

1) What is the role of debt and fiscal policy in the short- and long-run?

2) Is there a role for redistributing wealth and/or income intergenerationally?

The OG Model

Time t = 0, 1, 2, ...

 N_t people are born of generation t.

Alive for two periods, t and t + 1.

	t = 0	t = 1	t = 2	t = 3
Gen. ?	N_{-1}			
Gen. 0	N_0	N_0		
Gen. 1		N_1	N_1	
Gen. 2			N_2	N_2
Gen. 3				N_3

Endowments:

- ▶ $y_t(t)$ when young
- ▶ $y_t(t+1)$ when old

Consumption:

- ▶ $c_t(t)$ when young
- ▶ $c_t(t+1)$ when old

Preferences:

▶ $u(c_t(t), c_t(t+1))$

Initial generation:

- ▶ N_{-1} people with $y_{-1}(0)$ endowment
- ▶ $u(c_{-1}(0))$ preferences

Assumptions:

- $\blacktriangleright N_t = n^t N_0$
- either $u(c_t(t)) + \beta u(c_t(t+1))$, where $\beta \in (0, 1]$...
- ... or $\lambda u(c_t(t)) + (1 \lambda)u(c_t(t+1))$, where $\lambda \in [0, 1]$
- ▶ u' > 0 and u'' < 0

Hence: incentive to smooth consumption over time

But: cannot necessarily achieve it

Question:

Is this a matter of technology or market failure?

Pareto Optimal Allocations

Definition: An allocation is Pareto-optimal if (i) it is feasible and (ii) there is no other allocation that makes everybody at least well off and someone better off (pareto-dominates).

Allocation: $c = (c_1(0), (c_0(0), c_0(1)), (c_1(1), c_1(2)), \dots)$

Stationary Allocation:

- \blacktriangleright independent of time t
- ▶ same across all generations

•
$$c_t(t) = c_1$$
 and $c_t(t+1) = c_2$ for all t

Feasible Allocation:

$$N_t c_t(t) + N_{t-1} c_{t-1}(t) \le N_t y_t(t) + N_{t-1} y_{t-1}(t)$$
 for all t

With stationarity:

$$c_1 + \frac{c_2}{n} = y_1 + \frac{y_2}{n}$$

Allocation \tilde{c} dominates allocation c if and only if

$$\begin{aligned} u(\tilde{c}_t(t)) + \beta u(\tilde{c}_t(t+1)) &\geq u(c_t(t)) + \beta u(c_t(t+1)) \text{ for all } t \\ u(\tilde{c}_t(t)) + \beta u(\tilde{c}_t(t+1)) &> u(c_t(t)) + \beta u(c_t(t+1)) \text{ for some } t \end{aligned}$$

Note: initial old generation matters too!

$$\tilde{c}_{-1}(0) \ge c_{-1}(0)$$

The Set of Feasible Allocation

$$N_t c_t(t) + N_{t-1} c_{t-1}(t) \leq N_t y_t(t) + N_{t-1} y_{t-1}(t) \equiv Y_t$$

$$N_{t+1} c_{t+1}(t+1) + N_t c_t(t+1) \leq N_{t+1} y_{t+1}(t+1) + N_t y_t(t+1) \equiv Y_{t+1}$$

With stationary endowments we have

$$Y_{t+1} = nY_t$$

The set of per-capita (gen. t) feasible allocations is then constant across time

$$c_t(t) + \frac{c_{t-1}(t)}{n} = \frac{Y_t}{N_t} \equiv y$$

With stationary allocations, the frontier of the set of feasible allocations is given by

$$c_2 = n\left(y - c_1\right)$$

Indifference Curves

Initial old generation only likes period 2 consumption.

For other generations, fix utility level $u(c_t(t), c_t(t+1)) = \bar{u}$.

Slope of indifference curves are given by

$$\begin{aligned} u_1' dc_t(t) + u_2' dc_t(t+1) &= 0\\ \frac{dc_t(t+1)}{dc_t(t)} &= -\frac{u_1'}{u_2'} \end{aligned}$$

For time-separable utility function and stationarity this yields

$$\frac{dc_2}{dc_1} = -\frac{u'(c_1)}{\beta u'(c_2)}$$

Conditions for Pareto-Optimality

(i) Allocation needs to be on the boundary of the feasible set.

(ii) $MRS \ge MRT$

Here:

$$c_t(t+1) = n (y_t - c_t(t)) -\frac{u'(c_t(t))}{\beta u'(c_t(t+1))} \leq -n$$

SEE GRAPH

How can we compute one stationary PO allocation?

$$\max_{c_1, c_2} u(c_1) + \beta u(c_2)$$

subject to
$$c_1 + \frac{c_2}{n} = y$$

Lagrangian/FOC:

$$u'(c_1) - \lambda = 0$$

$$\beta u'(c_2) - \frac{\lambda}{n} = 0$$

$$c_1 + \frac{c_2}{n} = y$$

Hence:

$$\begin{array}{lcl} \frac{u'(c_1)}{\beta u'(c_2)} & = & n \\ c_1 & = & n \, (y-c_2) \end{array}$$

Queen's University - ECON 442