ECON 421 Financial Crises

Fall 2015

Queen's University - ECON 421

A Basic Investment Problem

Population is fixed at N = 2 with equal number of investors and entrepreneurs.

Investors:

- \blacktriangleright have endowments y when young
- ▶ either rent endowment out to entrepreneurs ...
- ▶ ... or store with gross return δ

Entrepreneurs:

- own technology
- ▶ return $f(k) = Ak^{\alpha}$ where $\alpha \in (0, 1)$ when old
- rent k from investors when young at interest rate R

Consumption takes place only when old.

Capital fully depreciates after one period.

Competitive Capital Markets

Entrepreneurs maximize profits taking interest rate R as given.

 $\max_k f(k) - Rk$

FOC:

$$f'(k) = R$$

Investors take R as given and supply all funds as long as $R > \delta$.

Assume $f'(y) > \delta$.

In equilibrium, we have

• $k^* = y$ and R = f'(y)

- investors consume returns: $f'(y)y = \alpha Ay^{\alpha}$
- entrepreneurs consume profits: $(1 \alpha)Ay^{\alpha}$

ENV I – A Simple Default Problem

Entrepreneurs survive with probability $\rho \in (0, 1)$.

Assume that investors have a well-diversified portfolio of projects so that the average return is ρR per unit of investment.

Entrepreneurs still maximize their expected return

 $\max_k \rho(f(k) - Rk)$

so that f'(k) = R.

But investors only invest in the portfolio as long as

 $\rho R \geq \delta.$

Result:

For $\delta > \rho f'(y)$, in equilibrium funding to entrepreneur is given by $\rho f'(k) = \delta$ or $k = \left(\alpha \frac{\rho A}{\delta}\right)^{\frac{1}{1-\alpha}}$ and thus increasing in ρ .

Shocks in ENV I

There is a lack of supply of funds.

Suppose ρA falls.

If $\delta > \rho f'(y)$, the fall in output by entrepreneurs is **amplified**.

Why?

capital input is reduced due to default risk

This is efficient.

return on storage > expected return on investment

Policy?

investment can be increased by reducing δ, but this is inefficient

To see the last point consider a social planner's problem

$$\max_{k \in [0,y]} (y-k)\delta + \rho f(k)$$

The first-order condition again yields

$$\delta = \rho f'(k)$$

Changing δ changes output according to

$$y - k + \left(-\frac{\partial k}{\partial \delta}\right)\delta + \rho f'(k)\frac{\partial k}{\partial \delta} > 0$$

by the envelope theorem (see FOC condition above).

ENV II – Default Incentives

Suppose now that entrepreneurs can decide not to repay. In that event, they forgive a fraction $\rho \in (0, 1)$ of output. Interpretation:

- ▶ entrepreneurs can appropriate all gross returns ...
- ▶ ... unless they pledge collateral
- ρ is the fraction of value that can be pledged

How much funding would an entrepreneur at most receive?

 $\max_{k} f(k) - Rk$
subject to
 $Rk \le \rho f(k)$

The constraint is called a borrowing (or collateral) constraint which restricts the demand of capital.

The Impact of Borrowing Constraints

The first-order conditions is given by

$$f'(k) = R(1+\lambda)$$

where λ is the Lagrange multiplier on the constraint.

The demand for funds is restricted whenever the borrowing constraint binds $(\lambda > 0)$.

Hence, there will be excess supply at any $R > \delta$. In equilibrium, we need to have then $R = \delta$.

Result:

The critical value for ρ such that the constraint is binding is given by

$$Ry = f'(y)y = \alpha Ay^{\alpha} = \rho Ay^{\alpha}$$

or

 $\alpha = \rho$.

Hence, when $\rho < \alpha$, the constraint is binding and investment is given by

$$Rk=\delta k=\rho Ak^{\alpha}$$

or

$$k = \left(\frac{\rho A}{\delta}\right)^{\frac{1}{1-\alpha}}$$

٠

Hence, tighter financial market conditions (low ρ) reduce output.

The marginal return on capital f'(k) exceeds the interest rate $R = \delta$.

Shocks in ENV II

There is a lack of **demand of funds**.

Suppose now ρA falls.

- \blacktriangleright A always matters
- \blacktriangleright ρ only when borrowing constraint binds

When $\rho < \alpha$, the fall in output by entrepreneurs is again **amplified**.

Why?

▶ capital is reduced as borrowing constraint becomes more binding

Policy?

- ▶ investment can be increased by **reducing** δ can be **efficient**
- why? $f'(k) > R = \delta$
- ▶ but income is being redistributed from investors to entrepreneurs