Note: Quiz 1 can be picked up at Distribution Center. Second Quiz covers: Preferences, Budget and Optimal Choices.

Core of theory of demand: how does demand change in different environments.

Can have many directions. We will look at:
 - effect of changes in price, and
 - effect of changes in income.
Effect of Changes in Price

- What happens to optimal choices when price changes.
- Derive demand function from consumer’s optimal choices.
Demand Function

- Note, demand curve derived from definition: letting P_x changes while holding others constant.
- See class notes for examples.
Demand Function (Cont’d)

Demand curve is also a "willingness to pay curve"

- MRS says willingness to substitute.
- \(MRS = \frac{P_x}{P_y} \), or willing to sacrifice \(\frac{P_x}{P_y} \) unites of y.
- To translate into value, \(\frac{P_x}{P_y} \cdot P_y = P_x \).
- Willing to pay \(P_x \) for additional unit of \(x \).
Effect of Changes in Income

- Income Consumption Curve (ICC): traces out optimal bundles on X-Y space as income changes.

- Engel curve (EC): depicts optimal choices on I-X space.

- Normal good: positive slope for both ICC and EC

- Inferior good: negative slope for both ICC and EC

With Quasilinear utility function, both are vertical line. (Math and intuition?)
Effect of Changes in Income

- Income Consumption Curve (ICC): traces out optimal bundles on X-Y space as income changes.
- Engel curve (EC): depicts optimal choices on I-X space.
Effect of Changes in Income

- Income Consumption Curve (ICC): traces out optimal bundles on X-Y space as income changes.
- Engel curve (EC): depicts optimal choices on I-X space.
- Normal good V.S. Inferior good.
Effect of Changes in Income

- Income Consumption Curve (ICC): traces out optimal bundles on X-Y space as income changes.
- Engel curve (EC): depicts optimal choices on I-X space.
- Normal good V.S. Inferior good.
 - Normal: positive slope for both ICC and EC
Effect of Changes in Income

- Income Consumption Curve (ICC): traces out optimal bundles on X-Y space as income changes.
- Engel curve (EC): depicts optimal choices on I-X space.
- Normal good V.S. Inferior good.
 - Normal: positive slope for both ICC and EC
 - Inferior: negative slope for both ICC and EC
Effect of Changes in Income

- Income Consumption Curve (ICC): traces out optimal bundles on X-Y space as income changes.
- Engel curve (EC): depicts optimal choices on I-X space.
- Normal good V.S. Inferior good.
 - Normal: positive slope for both ICC and EC
 - Inferior: negative slope for both ICC and EC
- With Quasilinear utility function, both are vertical line. (Math and intuition?)
Market Demand

- Horizontal summation of individual demand.
- See class notes for examples.
- Usually assume identical individuals.
Income and Substitution Effect

- Does price increase always decreases demand (Giffen good)?
Income and Substitution Effect

- Does price increase always decreases demand (Giffen good)?
- Decrease (increase) in price can have ambiguous effect.
 - relatively cheaper, buy more.
 - richer, buy less (inferior good).
Income and Substitution Effect

- Does price increase always decreases demand (Giffen good)?
- Decrease (increase) in price can have ambiguous effect.
 - relatively cheaper, buy more.
 - richer, buy less (inferior good).
- These ambiguities include:
 - the effect of wage rates on labor supply.
 - the effect of interest rates on savings.
Does price increase always decreases demand (Giffen good)?

Decrease (increase) in price can have ambiguous effect.
 – relatively cheaper, buy more.
 – richer, buy less (inferior good).

These ambiguities include:
 – the effect of wage rates on labor supply.
 – the effect of interest rates on savings.

Price changes involve two separate effects:
 – Substitution effect: good 1 becomes cheaper, more attractive than good 2 (opp. cost changes)
 – Income effect: b/c good 1 is cheaper, can buy more of it with a given amount of income. Purchasing power increased.
Substitution Effect

- How to separate?
Substitution Effect

How to separate?

- keep relative price changes, take away (grant) money to keep sth. fixed.

Hicks Decomposition: fix (initial) utility level.
Slutsky Decomposition: fix purchasing power (not income).
We will use Hicks below (clean intuition).
Substitution Effect

How to separate?

1. keep relative price changes, take away (grant) money to keep sth. fixed.
2. reimburse and hold the relative prices.
Substitution Effect

- How to separate?
 1. keep relative price changes, take away (grant) money to keep sth. fixed.
 2. reimburse and hold the relative prices.

- Hicks Decomposition: fix (initial) utility level.
Substitution Effect

How to separate?

1. keep relative price changes, take away (grant) money to keep sth. fixed.
2. reimburse and hold the relative prices.

Hicks Decomposition: fix (initial) utility level.
Slutsky Decomposition: fix purchasing power (not income).
Substitution Effect

- How to separate?
 1. keep relative price changes, take away (grant) money to keep sth. fixed.
 2. reimburse and hold the relative prices.

- Hicks Decomposition: fix (initial) utility level.
- Slutsky Decomposition: fix purchasing power (not income).
- We will use Hicks below (clean intuition).
 - how much consumer would require in payment to accept a change.
Start at original bundle A

A

BC1

IC1

y

x
Move to C when P_x Decreases
Until it touches original IC at B.
Hicks approach keeps utility constant.
• Point A is original optimizing bundle.
- Point A is original optimizing bundle.
- Decrease in price of X rotate budget line outward, and new optimal bundle is C.

- This is the sub. effect.
- Note the hypothetic budget at B is smaller than that at A (why?).
- We separate sub. effect out by taking away implicit income changes.

- Point C is the optimal bundle, that if we hold the new relative prices and add back the income that we took away.
- This is the inc. effect.
- Shift the hypothetic BC back to get implied changes in consumption.

See class note for examples.
• Point A is original optimizing bundle.
• Decrease in price of X rotate budget line outward, and new optimal bundle is C.
• Point B is the optimal bundle, that if we reduce the income just enough so that the consumer could just obtain the original utility level, at different relative prices.
 – this is the sub. effect.
 – Note the hypothetic budget at B is smaller than that at A (why?).
 – We separate sub. effect out by taking away implicit income changes.
Point A is original optimizing bundle.

Decrease in price of X rotate budget line outward, and new optimal bundle is C.

Point B is the optimal bundle, that if we reduce the income just enough so that the consumer could just obtain the original utility level, at different relative prices.
 – this is the sub. effect.
 – Note the hypothetic budget at B is smaller than that at A (why?).
 – We separate sub. effect out by taking away implicit income changes.

Point C is the optimal bundle, that if we hold the new relative prices and add back the income that we took away.
 – this is the inc. effect.
 – shift the hypothetic BC back to get implied changes in consumption.
Point A is original optimizing bundle.

Decrease in price of X rotate budget line outward, and new optimal bundle is C.

Point B is the optimal bundle, that if we reduce the income just enough so that the consumer could just obtain the original utility level, at different relative prices.
 – this is the sub. effect.
 – Note the hypothetic budget at B is smaller than that at A (why?).
 – We separate sub. effect out by taking away implicit income changes.

Point C is the optimal bundle, that if we hold the new relative prices and add back the income that we took away.
 – this is the inc. effect.
 – shift the hypothetic BC back to get implied changes in consumption.

See class note for examples.
Hicks substitution effect also known as Compensated Demand Curve.
- consumers are compensated just enough to obtain the original utility.
Hicks substitution effect also know as Compensated Demand Curve.
- consumers are compensated just enough to obtain the original utility.
Note sign of substitution effect must be negative
Hicks substitution effect also known as Compensated Demand Curve.
- Consumers are compensated just enough to obtain the original utility.

Note sign of substitution effect must be negative

Sign of income effect can be positive or negative (normal v.s. inferior)
Hicks substitution effect also know as Compensated Demand Curve.
- consumers are compensated just enough to obtain the original utility.

Note sign of substitution effect must be negative

Sign of income effect can be positive or negative (normal v.s. inferior)

Therefore Giffen good must be inferior good.
Slutsky Decomposition: Keeps Purchasing Power Constant
Slustsky defines substitution effect by keeping purchasing power constant.

- both original BC and hypothetical BC go through A.
- Note incomes are different.
Application: Consumption and Leisure Choice

- In practice, instead of taking income as given, consumer earn it by supplying labour.

- Assume:
Application: Consumption and Leisure Choice

- In practice, instead of taking income as given, consumer earn it by supplying labour.

- Assume:
 - Consumer’s endowment of time $T = 24$ hours,
In practice, instead of taking income as given, consumer earn it by supplying labour.

Assume:

- Consumer’s endowment of time $T = 24$ hours,
- Time can be used in labour (L) and leisure (R).
Application: Consumption and Leisure Choice

- In practice, instead of taking income as given, consumer earn it by supplying labour.

- Assume:
 - Consumer’s endowment of time $T = 24 \text{ hours}$,
 - Time can be used in labour (L) and leisure (R).
 - earn wage (w) on each working hour.
Application: Consumption and Leisure Choice

- In practice, instead of taking income as given, consumer earn it by supplying labour.

- Assume:
 - Consumer’s endowment of time $T = 24$ hours,
 - Time can be used in labour (L) and leisure (R).
 - earn wage (w) on each working hour.
 - Consumer values consumption (C) and leisure (R), max $U(C, R)$.

Tianyi Wang (Queen’s University) Lecture 7 Winter 2013 26 / 46
In practice, instead of taking income as given, consumer earn it by supplying labour.

Assume:

- Consumer’s endowment of time $T = 24$ hours,
- Time can be used in labour (L) and leisure (R).
- earn wage (w) on each working hour.
- Consumer values consumption (C) and leisure (R), max $U(C, R)$.
- Need to use wages to buy consumption good, Price = 1.
Application: Consumption and Leisure Choice

- In practice, instead of taking income as given, consumer earn it by supplying labour.

- Assume:
 - Consumer’s endowment of time $T = 24$ hours,
 - Time can be used in labour (L) and leisure (R).
 - earn wage (w) on each working hour.
 - Consumer values consumption (C) and leisure (R), $\max U(C, R)$.
 - Need to use wages to buy consumption good, Price $= 1$.

- Formulate consumer’s problem, see class notes for example.
We can find demand for leisure from optimal choices, by varying wage rate (see graph below).

Since: supply of labour + demand for leisure = 24 hours.

$L = T - R$. (See graph below).
Initial wage w_1. Leisure demand R_1.
w1 -> w2
Leisure demand decreases R1->R2
Leisure demand
INCREASEs R2→R3
Demand for Leisure
Substitution effect makes an hour of leisure more expensive.
- Substitution effect makes an hour of leisure more expensive.
- Income effect increases your overall endowment.
- Substitution effect makes an hour of leisure more expensive.
- Income effect increases your overall endowment.
- Sub. effect if negative.
• Substitution effect makes an hour of leisure more expensive.
• Income effect increases your overall endowment.
• Sub. effect if negative.
• If leisure is normal good, consume more when income raises.
 — Income effect is positive.
 — Inc. effect counteracts sub. effect.
Substitution effect makes an hour of leisure more expensive.
Income effect increases your overall endowment.
Sub. effect if negative.
If leisure is normal good, consume more when income raises.
— Income effect is positive.
— Inc. effect counteracts sub. effect.
Labour supply curve bends backward.
Compensating Variation and Equivalent Variation

- Two ways to measure consumer welfare.
 - Price changes result in welfare change.
 - Rather than describe welfare in utility terms, we would like to describe it in terms of dollars.

- Suppose price of X increases, (utility level drops):
Compensating Variation and Equivalent Variation

- Two ways to measure consumer welfare.
 - Price changes result in welfare change.
 - Rather than describe welfare in utility terms, we would like to describe it in terms of dollars.

- Suppose price of X increases, (utility level drops):

 1. Ask how much money to compensate a consumer, at the new price, such that she obtains her initial utility level.
 — This is Compensating Variation.

 2. Ask how much money to take away from a consumer, at the initial price, such that the effect is equivalent to the price change.
 — This is Equivalent Variation.
Compensating Variation and Equivalent Variation

- Two ways to measure consumer welfare.
 - Price changes result in welfare change.
 - Rather than describe welfare in utility terms, we would like to describe it in terms of dollars.

- Suppose price of X increases, (utility level drops):

1. Ask how much money to compensate a consumer, at the new price, such that she obtains her initial utility level.
 — This is Compensating Variation.

2. Ask how much money to take away from a consumer, at the initial price, such that the effect is equivalent to the price change.
 — This is Equivalent Variation.
Initially consume at A.
Price increased.
New bundle at C.
Find CV by shifting NEW BC until touches INITIAL IC.
CV = diff. in expenditure
CV = e(B) - e(C)
Find EV by shifting INITIAL BC until touches NEW IC.
EV = \text{diff. in expenditure}
EV = e(B') - e(C)
Together: Price INCREASE
Note: these are pure income effects.
Note: these are pure income effects.
Note: Change in consumer surplus includes both inc. effect and sub. effect.
• Note: these are pure income effects.
• Note: Change in consumer surplus includes both inc. effect and sub. effect.
• Which measure is higher depends on income elasticity.
• Note: these are pure income effects.
• Note: Change in consumer surplus includes both inc. effect and sub. effect.
• Which measure is higher depends on income elasticity.
• However as the budget share of most goods are small, they are virtually identical.