Perfect Competition
ECON 212 Lecture 13

Tianyi Wang
Queen’s University

Winter 2013
We can analyze firm’s supply decision.

Firm faces two constraints: technology and market.

Market constraint is summarized by the demand curve.

Demand curve facing the firm differs from market demand curve.

- one firm, two firms, ...
- see graphs later.

We start with the simplest market environment: perfect competition.
Market is perfectly competitive if there are large number of firms so that each one is too small to influence market price.

Firm’s problem: how much to produce taken price as given.

Strong assumption, works well.

See class notes for graph of Demand facing a Competitive firm.
Supply Decision of a Competitive Firm

- Here we take the cost structure as given.

- Competitive firm’s problem is

 \[
 \max_{q} pq - c(q)
 \]
Supply Decision of a Competitive Firm

- Here we take the cost structure as given.

- Competitive firm’s problem is

\[\max_q pq - c(q) \]

- Note we can backup input demands after solving for q.
Supply Decision of a Competitive Firm

- Here we take the cost structure as given.

- Competitive firm's problem is

\[
\max_q pq - c(q)
\]

- Note we can backup input demands after solving for q.

- FOC is

\[
p - c'(q) = 0
\]
Here we take the cost structure as given.

Competitive firm’s problem is

\[\max_q \ pq - c(q) \]

Note we can backup input demands after solving for q.

FOC is

\[p - c'(q) = 0 \]

or

\[p = MC(q) \]

\[MR(q) = MC(q) \]
Supply Decision of a Competitive Firm

- Here we take the cost structure as given.

- Competitive firm’s problem is

 \[
 \max_q pq - c(q)
 \]

- Note we can backup input demands after solving for q.

- FOC is

 \[
 p - c'(q) = 0
 \]

- or

 \[
 p = MC(q) \\
 MR(q) = MC(q)
 \]

- Competitive firm’s supply curve is its MC curve.
Here we take the cost structure as given.

Competitive firm’s problem is

$$\max_q pq - c(q)$$

Note we can backup input demands after solving for q.

FOC is

$$p - c'(q) = 0$$

or

$$p = MC(q)$$

$$MR(q) = MC(q)$$

Competitive firm’s supply curve is its MC curve.

However there are two issues.
Competitive Firm’s Supply Curve

- We derived supply curve from FOC. It could either be a max or a min.
- See class notes graph where two output levels satisfy FOC.
- Note we can avoid q_1 by checking SOC.
- Graphically this happens on declining portion of MC.
- So firm’s supply curve is only the upward sloping portion of MC.
Second issue is if price is so low that not profitable to produce.

See class notes for shutdown condition.

Note: shutdown is different from exit.

So only upward sloping portion of MC above AVC is competitive firm’s supply curve.
Long-run Supply of Competitive Firm

- Long-run curve intersects short-run curve at output \(q^* \) where fixed factor is optimal.

- See class notes for graph.
Long-run Supply of Competitive Firm

- Long-run curve intersects short-run curve at output q^* where fixed factor is optimal.
- See class notes for graph.
- LR curve is more responsive to price.

Thus long-run supply curve is the upward sloping portion of LRMC above LRAC.

See class notes for constant returns to scale technology.
Long-run curve intersects short-run curve at output q^* where fixed factor is optimal.

- See class notes for graph.
- LR curve is more responsive to price.
- Firm can exit in the long-run. Thus profit has to be greater than zero.

\[
pq - c(q) \geq 0 \\
p \geq \frac{c(q)}{q}
\]
Long-run Supply of Competitive Firm

- Long-run curve intersects short-run curve at output q^* where fixed factor is optimal.

- See class notes for graph.

- LR curve is more responsive to price.

- Firm can exit in the long-run. Thus profit has to be greater than zero.

\[
pq - c(q) \geq 0
\]
\[
p \geq \frac{c(q)}{q}
\]

- Thus long-run supply curve is the upward sloping portion of LRMC above LRAC.
Long-run Supply of Competitive Firm

- Long-run curve intersects short-run curve at output q^* where fixed factor is optimal.

- See class notes for graph.

- LR curve is more responsive to price.

- Firm can exit in the long-run. Thus profit has to be greater than zero.

\[
pq - c(q) \geq 0
\]

\[
p \geq \frac{c(q)}{q}
\]

- Thus long-run supply curve is the upward sloping portion of LRMC above LRAC.

- See class notes for constant returns to scale technology.
Short-run Industry Supply

- Suppose there are n firms, let $S_i(p)$ be firm i’s supply curve. Then the industry/market supply is

$$S(p) = \sum_{i=1}^{n} S_i(p)$$

- If firms are identical, $S(p) = nS_i(p)$
- Market demand and market supply determines equilibrium price and output level.
Long-run Industry Equilibrium

- If no barriers to entry, firms enter and exit in the long-run.
- Firms entry and exit affect output produced and therefore equilibrium price.
- We can get market supply by adding up individuals.
- Will get an approximation. See class notes.
- Note LR industry supply looks the same as firm supply with CRS technology.
In Competitive Equilibrium, we have Demand = Supply and each firm max profit.

1. Firm max profit: \(p^* = LMC(q^*) \)
2. Perfect competition: \(p^* = LAC(q^*) \)
3. Market clears: \(Q^D(p^*) = Q^S(p^*) = n^* q^* \)
Suppose entry is limited in some industries (Agriculture) due to limited fixed factors (Land).

It might look like farmer earns positive profit π.

This not correct, we do not measure opportunity cost of Land.

Whenever a fixed factor is preventing entry, a rental rate for that factor exists.

This is Economic Rent: payments to a factor of production in excess of the minimum necessary to have that factor supplied.
Opportunity Cost and Economic Rent

- Suppost entry is limited in some industries (Agriculture) due to limited fixed factors (Land).
- It might look like farmer earns positive profit π.
- This not correct, we do not measure opportunity cost of Land.
Opportunity Cost and Economic Rent

- Suppose entry is limited in some industries (Agriculture) due to limited fixed factors (Land).

- It might look like farmer earns positive profit π.
- This not correct, we do not measure opportunity cost of Land.
- Farmer can sell the Land for π.
Suppose entry is limited in some industries (Agriculture) due to limited fixed factors (Land).

It might look like farmer earns positive profit π.

This not correct, we do not measure opportunity cost of Land.

Farmer can sell the Land for π.

Whenever a fixed factor is preventing entry, a rental rate for that factor exists.
Suppose entry is limited in some industries (Agriculture) due to limited fixed factors (Land).

It might look like farmer earns positive profit π.

This not correct, we do not measure opportunity cost of Land.

Farmer can sell the Land for π.

Whenever a fixed factor is preventing entry, a rental rate for that factor exists.

This is Economic Rent: payments to a factor of production in excess of the minimum necessary to have that factor supplied.
Directly write profit max problem:

\[
\max_q pq - (wL + rK)
\]

s.t. \(q = Q(L, K) \)

How to solve? sub constraint into objective by eliminating \(q \).

\[
\max_{K,L} pQ(L, K) - (wL + rK)
\]

FOC for \(K \) and \(L \) respectively are

\[
\begin{align*}
pQ'_K &= r \\
pQ'_L &= w
\end{align*}
\]

Take the ratio, we get the optimality cond’t for cost-min.

\[
\frac{MP_K}{MP_L} = \frac{r}{w}
\]