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Abstract

When distressed traders are subject to regulatory solvency or leverage constraints,
they have to liquidate their positions quickly, which may depress the asset prices. The
shareholders of these assets will incur mark-to-market losses, which may be forced to
liquidate as well, and the liquidation can spread out and become contagious over the
financial markets. This paper explores the process of contagion of this type across asset
markets through the price effect and shows that prices of thinly-held assets (assets with
only a few shareholders) tend to drop earlier and faster than thickly-held assets at the
early stages of a contagion (if a contagion were to happen). If this is treated as a signal,
then this signal can predict an extensive contagion of fire sale fairly accurately. This
suggests that a new type of stock indices which include only low degree assets should
be composed, and it may help policymakers and investors respond to financial crises in
a timely manner. The complex financial markets are depicted by random graph-based
bipartite networks, which allow for multiple assets and multiple agents with arbitrary
portfolios, and the results are derived through a analytical/numerical hybrid method, as
well as simulations. We also examine the price dynamics of thinly/thickly-held assets in
the formation of bubbles and contagion of boom, which is the reverse process of contagion
of fire sales.
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1 Introduction

When financial institutions are in distress, forced sales of assets, either prescribed by regulatory

constraints or forced by margin calls, may depress the price of the asset being liquidated and

adversely affect other shareholders. This adverse effect can induce further round of forced sales

by these shareholders in other asset markets, and the rapid price declines can be contagious and

spread extensively across markets. In the US subprime crisis of 2008, the Dow Jones Industrial

Average declined by 18% as of October 10, the largest weekly decline ever. Since various US

stocks and derivatives were purchased by both American and European investors, and when

their capital were eroded by US portfolio plunges, they had to liquidate their positions on

European assets, either prescribed by VaR constraints or simply to show solvency. Thus crisis

transmitted quickly from US to Europe, and in the same week, the FTSE100 (share index of

the 100 top UK companies) declined by 20%, again the worst ever.

In August 2011, Standard & Poor’s downgraded U.S. Treasury debt. Trillions worth of

US Treasuries are pledged as collateral by borrowers such as banks and derivatives traders.

The debtors will be required to append more cash or securities to reassure the lenders if their

collateral isn’t considered as safe by creditors. That could force debtors to sell off other assets

to come up with the money. In the 30 days that follows, the three major US stock indices

indeed declined by more than 10%.

In modern financial systems, institutions are interlinked by debts as well as common assets

in their portfolios, and face a system risk of contagion of default and fire sale when the initial

shock is large enough, as demonstrated by the recent crises. These financial contagions generally

spread through two channels - direct credit exposures and indirect linkages through holding

same assets and their prices changes. While the former has been extensively studied in the

literature, the latter has received much less attention. This paper thus focuses on the contagion

through indirect price channel.

In network literature the number of links of a node is termed its degree, so that if an asset

has only a few shareholders, we say it is a thinly-held asset, or low degree asset; conversely,

it is a thickly-held assets, or high degree asset. Similarly, if a trader has many assets in her

portfolios (well-diversified), she is a high degree trader; otherwise, she is a low degree trader.
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The simulation results from this paper which concerns about liquidity risks, as well as those

from previous literature on credit risks, show that, as the financial system/networks are getting

better and better connected, i.e. banks/agents’ portfolios are more diversified, the probability

of widespread contagion (termed the contagion frequency) and extent of contagion develop

in a fashion depicted in Figure 1. It is worthy of note that for networks with moderate to
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Figure 1: Simulation results of contagion frequency and extent in financial networks

moderate-high connectedness (i.e. between number of assets in portfolios of 8 and 12, which are

reasonably good substitute of the real world financial networks) in the Figure 1, the contagion

frequency is modest and decreasing. But once a contagion does happen, it is almost certain

that 100% agents go bankrupt. “The distribution of cascade sizes observed in single-seed GK1

simulations is thus typically bimodal: only a certain fraction of cascades reach a network-

spanning size, the remainder remain small (typically only a few nodes)”(Gleeson et al. (2011)).

This “robust-yet-fragile tendency ... highlights that a priori indistinguishable shocks can have

very different consequences for the financial system, depending on the particular point in the

network structure that the shock hits the resilience of the financial system to fairly large shocks

prior to 2007 was not a reliable guide to its future robustness.”(Gai and Kapadia (2010)). These

concerns motivated the development of this paper.

This paper aims to identify signals of extensive contagions of fire sale across asset markets

at their early stages, and try to distinguish extensive contagion from those contained within

its origin, due to priori indistinguishable shocks. The main result is that prices of thinly-held

1Gai and Kapadia (2010)
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assets (assets with only a few shareholders) are more sensitive to contagion than average assets,

i.e. their prices decline faster than others at the beginning. In addition, the larger the price

drop of thinly-held assets is (compared with thickly-held assets), the more likely a system

wide contagion will materialize. If this is treated as a signal, then it predicts an extensive

fire sale contagion fairly accurately, e.g. after observing this signal, 96% the chance that an

extensive contagion will happen, while not observing this signal, only 6% the chance a contagion

happens (See Table 1). So it suggests that a new type of stock indices which include only low

degree assets should be composed, and this may help investors respond early to reduce loss and

policymakers react to prevent a pandemic contagion from happening. To my knowledge, this

paper might be the first one which investigates the relationship between asset degree and its

capability to predict contagion. We also show that under some conditions, traders exhibit the

same trend: at the beginning of a contagion, less diversified (low degree) traders go bankrupt

faster than better diversified (high degree) ones.

Compared to the existing literature, which considers defaults only, or at most a single

common asset, this paper deals with multiple assets and multiple traders, where we resort

to bipartite networks2. The bipartite networks allow multiple assets explicitly represented by

nodes that are distinct from agents (Figure 2 shows an example), in contrast to most financial

network models where only agents/banks are modeled. With multiple assets distinguished from

agents, price of each asset can be individually identified, and the contagion through price effect

from one asset to another becomes self-evident. To highlight the price effects, I abstract away

the counterparty risks/direct exposures and study networks of pure asset portfolio linkages.

The bipartite network structure can also be used to model the emergence and contagion of

bubbles (see Section 6) in the asset market, which is the reverse process of fire sale.

In this paper we focus on random graph/network structures only. A random graph/network

is a graph generated by some random process. In particular, how many links each node has is

determined by a given probability distribution. In addition, who is connected to who is also

determined by this random process. This type of networks highlights the topological complex-

ity, and bears some key features of the real world financial networks, which makes it a good

2Its counterparty, unipartite network, is thus the network widely used in the existing literature which pri-
marily concerns about interbank loans
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substitute in system risk research. This paper extends Gleeson’s framework (see next section)

by applying it to bipartite random networks. By using both Gleeson’s analytical/numerical

hybrid method as well as simulations, we will exam in greater details about what happens in

the contagion process, which has not been explored in previous literature.

2 Relationship to existing literature

Allen and Gale (2000) is the first paper that studied the financial contagion of counterparty

risk over a network. With a simple network of four banks, they showed the advantage of diver-

sification in a network sense: when banks only have exposures to a few others, the counterparty

risk is not well diversified and the system is more vulnerable. On the other extreme, where

every bank has exposures to all other banks, the risk is diversified across more counterparties,

and default may be absorbed, so that contagion is less likely. This intuition turns out to be

fundamental, and most models in financial networks demonstrate and depend on it.

Although the insights from simple and rigid network structures are seminal, its generality

to the real world financial systems is doubtful. As indicated by Cifuentes et al. (2004) in

more complicated networks, there is a non-monotonic relationship between connectedness and

financial stability (depicted in Figure 1). Gai and Kapadia (2010) use random graph-based

network structures to accommodate arbitrary and complex networks, so the results of this

paper are compatible to and apply to all possible networks. They introduce the generating

function techniques from the literature of physics on complex networks (Newman et al. (2001))

and derive an elegant analytical solution of the probability of system wide contagion.

While both Cifuentes et al. (2004) and Gai and Kapadia (2010) incorporate the asset price

effects, there is only one generic illiquid asset in their models. In most of the literature on

financial networks, including the above two papers, asset (if any) is the source instead of

the medium/channel of contagion, and contagion still spreads through the credit channel, i.e.

without default, there will be no contagion. The last three decades have seen a transition from

bank-based financial system to a market-based financial system. As demonstrated in recent

crises, contagion across assets markets via price effects plays an important role in market-based

systemic events. Following Newman et al. (2001) and Gai and Kapadia (2010), Shen (2010)
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investigates the contagion of fire sale across multiple assets markets on a random graph network,

evaluates the systemic risks by using generating functions and obtains results similar to those

of Gai and Kapadia (2010). Established in an almost identical setting to Shen (2010), this

paper identifies early signals of contagion of fire sale and provides a novel method to predict

financial crisis on asset markets.

A parallel methodology to characterize the contagion process on random networks is pro-

vided by Gleeson and Cahalane (2007), Gleeson (2008) and applied to banking networks by

Gleeson et al. (2011). Their methods calculate, period by period, the expected infection rate of

nodes of each and all degrees, and then compute the infection rate of links emitted from these

nodes, and accumulate current and past distressed links by using binomial distribution, and

then enter the next period, until the results converge. This method crucially depends on the

assumptions of networks being random. I call this model the Gleeson’s method hereafter. In

this paper, this recursive method is extended to bipartite networks and used to calculate the

price drop and trader bankruptcy in the contagion process.

The rest of the paper is organized as follows: in Section 3, the model is specified and

the vulnerability of assets are identified. Section 4 outlines two parallel and complementary

methods used to calculate the contagion: Gleeson’s method and monte carlo simulations, and

the main results of this paper are given. To examine the robustness and generality of the these

results, Section 5 modifies the original model and compare the results of the two models. As

an extension, I discuss contagion of bubble, the reverse process of fire sale contagion in Section

6. A final section concludes.

3 The model

3.1 Network representation

We use nodes and links to represent the relationship among multiple traders and multiple assets

(see Figure 2). Nodes are divided into two groups - traders and assets (or securities, I use them

interchangeably). A link between a trader and an asset means that this trader holds some share

of this asset. As shown in Figure 2, one trader may hold shares of some assets but not others,

and one asset may be held by some traders but not every trader.
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Figure 2: Asset markets and shareholders represented by a bipartite network

We assume that there are in total S assets, T traders in the network. In network literature,

the number of links of a node is called its degree. Let ds denote security s’s degree and dt trader

t’s degree.

3.2 Asset and pricing

A trader does not have any other asset than those in the network. Assets are assumed to be

illiquid. Government bonds and treasury bills are sometimes considered perfectly liquid assets

so they might not apply to this model. Each trader is assumed to be a large player, so that

their behavior will affect prices.

Let V denote mark-to-market initial value of a security held by traders in the network.

“initial” means before any trader is hit by any shock and forced to liquidate. V is constant

across all assets means that the initial value of each security held in the network is identical3.

We also require that, for each security, V is equally distributed among its shareholders, with

the value of each link for the security being V
ds

.

It is assumed that there are also long term investors who are outside the network. When

trading, traders in the network do not trade with each other, instead they trade with only

those outside the network: as traders in the networks buy the security, the outside market has

a limited supply and the price is pushed up; and as the traders sell the security, the outside

market has a limited capacity to absorb and the price is depressed. Let Ps be the price of

3Alternatively we can make V a random variable. See Footnote 6.
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security s4. Price Ps is thus a strictly increasing function of xs:

Ps = ρ(xs) (1)

where xs is the fraction of security s held in the network, and thus 1 − xs is the fraction held

outside the network by those long term investors. By this pricing formula, assets are assumed

to be illiquid, and investors outside the network are assumed to be passive to the short term

price fluctuations. These long term investors are willing to take the assets being liquidated by

traders in the networks because the prices are depressed low enough. To simplify the analysis,

we impose that xs = x, ∀s (before any contagion happens).

Short selling is not allowed.

3.3 Contagion

Time is discrete. At time 0, a randomly chosen trader is hit by a shock and is forced to

liquidate all her portfolio, which depresses the prices of those assets so that shareholders may

be in distress. Assume that all traders in the network have an identical capital buffer k. If a

trader’s mark-to-market loss is larger than k, it is assumed that this trader will be forced to

liquidate all the assets she holds5. This is sometimes referred to as zero recovery assumption.

These liquidations may induce yet further round of liquidations of other traders. In the real

world a constrained trader forced to to reduce holdings of assets does not always end up totally

liquidating. But large share sale often depress the price and may induce other shareholders to

sell. When others are forced to sell as well, the price will be depressed further and this triggers

a downward spiral in price. This process is similar to a system with a high but unstable

equilibrium disturbed and evolving into a lower but stable equilibrium. Cifuentes et al. (2004)

discuss this procedure in detail and have a similar result. When a crisis is fermented and

investors are highly uncertain, this type of processes are more likely than often to occur.

The contagion continues until a period where no trader is liquidating, and then the contagion

ends.

4Therefore prices may differ from security to security, and shares may differ from link to link
5A capital buffer that is proportional to a trader’s total asset looks more natural, and this is discussed in

Section 5.

8



3.4 Network structure

The network is a random graph with securities’ degree distribution pj and traders’ degree

distribution qk exogenously given (j and k = 0, 1, 2, ...). The distributions prescribe that, of

the S securities, a fraction of pj has exactly degree of j; and of the T traders, a fraction of qk has

exactly degree of k. But exactly who is connected to who is determined by a stochastic process

that complies with the degree distributions. Let µ =
∑
j jpj and ν =

∑
k kqk, so the average

degree of security is µ and the average degree of trader is ν, and we have Sµ = Tν =total

number of links in the network.

3.5 Vulnerability of security

1 2 3

D F

Securities

Traders

Figure 3: Contagion

In Figure 3, when trader F is forced to liquidate her positions of security 2 and 3, x2 (the

fraction) decreases from x to x − x
d2

, and price P2 decreases from ρ(x) to ρ(x − x
d2

). Trader

D’s holding of security 2 is initially worth of V
d2

. Security 2’s price decline leads to a loss of

A(d2) ≡ V
d2

ρ(x)−ρ(x− x
d2

)

ρ(x)
. If A(d2) > k, trader D will go bankrupt and be forced to liquidate all

her positions of securities 1 and 2, otherwise D survives. Since ρ is a strictly increasing function,

A(d2) is strictly decreasing in d2, and the equation A(d2) = k has exactly one solution, and

denote it d∗. If any asset’s degree d < d∗, we have A(d) > k, otherwise, A(d) < k.

Since V , x and k are constant parameters, it turns out that if a security’s degree is less

than d∗, as long as there is one shareholder liquidates, the price decline will be so large that

it will induce the bankruptcy of all other shareholders, which force them to liquidate all their

holdings of other securities; contrarily, if a security’s degree is equal or larger than d∗, one share-
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holder’s liquidation does not generate a price decline large enough to trigger other shareholders’

bankruptcy by itself. The bankruptcy must then be the due to accumulated price declines in

the portfolios later. In short, if a security is held by only a few traders (< d∗), it is vulnerable;

otherwise, we say it is (relatively) safe. We thus define the vulnerability of a security as follows:

Definition 3.1 A security s is vulnerable if

ds < d∗ (2)

Define an indicator function v(ds)
6,

v(ds) =

{
1 if ds < d∗;
0 if ds ≥ d∗.

A particularly simple example is when ρ(x) = γx, where γ is a constant, i.e. the price is

linear in x. Again in Figure 3, when trader F is forced to liquidate all her positions of security

2 and 3, x2 decreases by 1
d2

, and since price is linear in x2, P2 also decreases by 1
d2

. Trader D’s

holding of security 2 is initially worth of V2
d2

. This price decline leads to a loss of 1
d2
V2
d2

= V
d22

for trader D. If V
d22
> k, i.e. d2 <

√
V
k

, trader D will be forced to liquidate all her positions

of securities 1 and 2, otherwise D survives. This shows that, the smaller the ratio V
k

, the less

likely a security is vulnerable to contagion, which implies that higher capital buffer may reduce

the chance of contagion.

4 Numerical methods

In the numerical methods, we assume the simple linear pricing formula:

Ps = γXs

where γ is a constant.

4.1 Gleeson’s method applied to bipartite networks

Gleeson’s methods is an analytical/numerical hybrid method. It calculates the expected infec-

tion rate for nodes of each and all possible degree, and then compute the infection rate of links

6Alternatively, we can make both V and k random variables, so that the rigid assumptions on constant v and
k are gone and assets and traders becomes heterogenous, and this indicator function will become a probability.
But we will lose the tractability of the model and the analytical result will not be available.
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emitted from these nodes, and accumulate current and past distressed links by using binomial

distribution, and then enter the next period, until the results converge. This done period by

period. This binomial assumption depends on the assumptions of networks being random. In

this paper, I extend this recursive method to bipartite networks and calculate the price drop

and trader bankruptcy in the contagion process. See Appendix A for details.

4.2 Monte carlo simulations

In simulations we relax the no-loop restriction on the network structures and allow multiple

impacts occur to a trader consecutively and simultaneously. We consider networks with 1000

securities and 2000 traders. We assume a random graph in which each possible link between

a trader and a security is present with independent and identical probability p (binomial dis-

tribution). The binomial distribution is chosen for simplicity. The distribution is implemented

by Configuration Model7.

I draw 500 realizations of network for each p8, and in each of these realized networks, I

randomly choose a trader and force her to liquidate all her portfolio. This whole procedure is

repeated 10 times. Any trader whose accumulated loss on all affected securities is larger than

k must liquidate all their assets as well.

I assume the price is linear in the fraction of the asset held in network, i.e. ρ(x) = γx,

where γ is a constant. By varying the ratio V to k, we examine the effect of capital buffer on

the contagions. By varying the value of p, we have networks with different degree distributions

and thus different average degrees of traders and securities. The average degree of a network

is an indicator of how well or poor a network is connected. We would like to see when system-

wide contagion is more likely and when it is rare. When more than 5% of the total traders are

infected, we consider it a system-wide contagion or crisis. Conditional on there is a system-wide

contagion, we also examine the extent of that contagion.

4.3 Results

The simulation results of the model with k/V = 0.025 is shown in Figure 1. We can see that

when the average degree is either very low or very high, system-wide contagion is not likely to

7See Jackson (2008), Section 4.1.4
8Traders and securities have independent degree distributions.
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happen. Whereas within a certain window where the average degree is moderate, an extensive

contagion is more likely, but is non-monotonic in average degree. This confirms the results in

Section ??. The extent of contagion, conditional on that it has infected more that 5% of the

trader population, is approximately the same as the frequency of contagion at the range of lower

average degrees. But at the higher end of average degree, although system-wide contagion is

rare, but once it happens, it will be a severe one. So this model has the same robust-yet-fragile

feature as Gai and Kapadia (2010).

Gleeson’s method turns out to agree with simulation result quite well (see Figure 4).
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Figure 4: Agreement between simulation results and Gleeson’s method

By using Gleeson’s method, Figure 5 gives a clearer image of how trader’s bankruptcy rate

develops as contagion proceeds. Notice that, in low density networks, trader’s bankruptcy

rate develops slowly and then increases steadily, and then converges at a moderate level. In

intermediate-dense network, it develops rapidly at the very beginning and reach the top almost

in a blink of an eye. As networks become even denser, the bankruptcy rate increases again slowly

and the big jumps will not happen until the last minute, while the jumps are more dramatically

and suddenly. Above certain network density, no further contagion happens. This observation

agrees with that from Figure 1: the contagion happens only with certain window of network

density; within that window, the denser the network is, the more abruptly the bankruptcy rate

changes. As network is getting denser, the initial contagion develops with more resistance,

because now agents are more diversified, and price drop becomes smaller since asset degrees

also increase. These result suggest that, in the real world financial networks, where agents

are usually diversified, contagion will happen either very fast (intermediate connectedness), or
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Figure 5: Dynamics of average asset price drop

develops sneakily and then abruptly spreads extensively (high connectedness). In these cases,

especially in the latter, it is important that the policymakers could detect and predict at an

early stage of the contagion.

In simulations, we recorded price drops of different assets - low degree assets and high degree

assets - in the process of contagion. The cutoff between the two group is their vulnerabilities:

vulnerable assets are in low degree group and others in high degree group. Figure 6a shows

that in low density networks, the difference of price drop speed between the two asset groups do

not differ much, though we can still observe that, at the beginning, low degree assets decrease

faster than high degree group. This difference becomes much more apparent when networks

are getting denser, which is show in Figure 6b and 6c. Based on these observations, especially

those in the first several periods, it is suggested that, the low degree assets are more sensitive

to the initial contagion. The intuition is simple: if any vulnerable asset gets infected, all

its shareholders will go bankrupt in the next period and will be forced to liquidate all their

portfolios. This makes price of vulnerable assets drop significantly. While for safe assets, their

prices are only eroded slowly by the liquidation of its shareholder every now and then, induced

either by other assets or this asset itself. To verify the robustness of the observation that

low degree assets are more sensitive, we will exam another model without this obvious degree

dependency in Section 5.

Figure 7 shows a typical price drop in the second period in simulations, in which the price
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Figure 6: Price dynamics of vulnerable and safe assets in materialized contagions

drop of vulnerable assets (degree≤ 6) are much larger than that of other assets. The vertical

line is the average asset degree in this network. It is now tempted to set up a signal to see
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Figure 7: A snapshot in 2nd period of price drop of assets of all degrees

whether low degree assets’ sensitivity can be used to help predict contagion. The signal is

defined as follows: In the simulations, focusing on second period9 only, when vulnerable assets’

average price drop is as twice or larger than that of safe assets, the signal is true; otherwise it

is false. We then examine whether this signal helps to predict the contagion or not. Table 1

shows the results.

Each row corresponds to a certain density of network. The first three columns are average

trader degrees, contagion frequency and contagion extent, which are quite similar to data

presented in Figure 1. Signal frequency is the probability that the signal is true. Fifth column

9The first period in simulation has the initial shock only, and there is no contagion yet. So the second period
is when contagion first develops.
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Average trader Unconditional Contagion Signal Crisis freq. con- Crisis freq. con-
degree crisis frequency extent frequency ditional on signal ditional on no signal

Fc Fs Fst Fsf
0.556 0.00032 0.05781 0.3322 0.00096 0
1.111 0.51526 0.52276 0.60034 0.84932 0.01346
1.667 0.73086 0.78284 0.74004 0.97319 0.04101
2.222 0.76254 0.87937 0.75742 0.98746 0.06027
2.778 0.78422 0.94621 0.75982 0.99413 0.12016
3.333 0.7072 0.96783 0.67736 0.99135 0.11065
3.889 0.62646 0.98099 0.57956 0.99217 0.12235
4.444 0.51350 0.98600 0.43112 0.98817 0.15378
5.000 0.35404 0.99300 0.30074 0.97679 0.08621
5.556 0.22592 0.99800 0.19274 0.93183 0.05738
6.111 0.10062 0.99900 0.08640 0.80324 0.03417
6.667 0.04844 1 0.04038 0.74443 0.01915
7.222 0.02812 1 0.02400 0.69167 0.01180
7.778 0.00898 0.99900 0.00076 0.50000 0.00861
8.333 0.00520 1 0.01128 0.23936 0.00253
8.889 0.00014 0.99900 0 0 0.00014
9.444 0.00086 1 0.00016 0 0.00086
10.000 0 0 0 0 0
10.556 0 0 0 0 0
11.111 0 0 0 0 0

Table 1: Unconditional crisis frequency and frequency conditional on signal
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is the probabilities that, conditional on signal is true, there is an extensive contagion. The

higher this probability is, the better the signal is. The last column is the probabilities that,

conditional on signal is false, there is an extensive contagion. The lower this probability, the

better the signal. One can verify that Fc = Fs × Fst + (1− Fs)× Fsf for each row.

The results show that the signal is very helpful. For example, when average asset degree

is 6.667, the probability that an extensive contagion happens is 0.04844, but once it happens,

it will all traders will go bankrupt and all prices drop to zero accordingly. While with the

signal being true, we are quite confident (0.74443) that this will happen, and with the signal

being false, the crisis happens with very small probability (0.01915). So the signal dramatically

increases our ability to predict whether or not the crisis happens. Again, in Section 5 we will

examine a modified model to see its robustness.

The current used stock indices, e.g. S&P 500, FTSE 100, DJIA or Nasdaq Composite, are

usually those of most highly capitalised companies, but not necessarily those with only a few

shareholders. To better predict the potential contagion on stock markets, I recommend that

stock indices which include, respectively, low degree stocks only and high degree stocks only,

and monitor the ratio (or other similar parameters) between the two.

5 Robustness

The signal in the original model is surprisingly good in predicting contagion because of the way

the model is specified. To examine the sensitivity of the low degree assets in general, we modify

the model as follows: The total value of each asset held in network is no longer assumed to

be constant. Instead, the monetary value of each and all links is assumed to be identical. In

addition, all traders maintain a constant leverage L, so that a trader’s capital buffer is 1/L of

her total value of portfolios, instead of an absolute constant. An important change is added: if

any price decreases by 50% or more, its price plummets to zero in the next period. It can be

justified by the observation that, when price plummets, a lot of shareholders want to sell this

asset to avoid further loss. After these modification, the vulnerability of assets with a cutoff

degree no longer exists. Asset prices and agent’s portfolio values are eroded bit by bit as the

contagion progresses.
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Figure 8: Price dynamics of vulnerable and safe assets in materialized contagions (modified
model)

From simulations, we have contagion frequency and extent, as well as average price drop

are similar to those of the original model and hence are omitted. Figure 8a shows that in well

connected networks (average trader degree= 6.667), the difference of price drop speed between

low and high degree assets10 becomes less obvious. Figure 8b gives the details of the first several

periods in Figure 8a, where we can still tell that low degree assets’ price declines faster than

high degree group. Under the same definition of signal, we examine whether this signal can

still help to predict contagions. Table 2 shows the results. Now the reliability of the signal is

not as good as is in the original model. Fst are much lower than their counter parties in Table

1, while Fsf are higher. For example, at a average degree of 6.111, the unconditional crisis

frequency is 0.13220. With the signal present, its conditional probability is 0.26837, compared

with 0.80324 in Table 1. Without the signal, its missing rate also rises to 0.09900, compared

with 0.03417 in Table 1. Though not as efficient as before, the signal still put us at a better

position in forecasting the realization of a contagion. Considering the serious consequence of

such a system-wide disaster, it is still worthwhile to construct such a signal as a reference.

The intuition why, absent of degree cutoffs, prices of low degree assets still drop faster than

high degree asset at the early stage of contagion can be seen from Appendix A. From equation

3 and 4 we have v1k(m) = Bk
m(ρ0 + (1 − ρ0)f 1

2 ), where Bk
m(p) =

(
k
m

)
pm(1 − p)k−m. Assuming

10Now there is no degree cutoff between low and high degree assets, the separation of the two groups be-
comes more difficult. In simulations we separate the two groups merely by subjective standards based on past
observations
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that all initial prices are 1. The average price of degree k assets at time t P
t
k is

P
t

k =
1

k

b k
2
c∑

m=0

(k −m)vtk(m)

where b·c is the floor function, returning the greatest integer less than or equal to its argument.

In period 1, we have

P
1
k =

1

k

b k
2
c∑

m=0

(k −m)v1k(m)

=
1

k

b k
2
c∑

m=0

(k −m)Bk
m(p), where p = ρ0 + (1− ρ0)f 1

2

= (1− p)
b k
2
c∑

m=0

(
k − 1

m

)
pm(1− p)k−1−m

Let X ≡ ∑b k
2
c

m=0

(
k−1
m

)
pm(1 − p)k−1−m = P

1
k

1−p and Y =
∑k−1
m=d k

2
e

(
k−1
m

)
pm(1 − p)k−1−m, where

d·e is the ceiling function. We know that
∑k−1
m=0

(
k−1
m

)
pm(1 − p)k−1−m = X + Y = 1, so that

Y = (1 − p) − X. By symmetry of
(
k−1
m

)
(i.e.

(
k−1
m

)
=
(

k−1
(k−1)−m

)
) we have

∑ k−1
2

m=0

(
k−1
m

)
= 1

2
,

thus
∑ k

2
m=0

(
k−1
m

)
≈ 1

2
when k � 1. Since ρ0 � 1 and initial link infection rate f 1

2 � 1, we

know p � 1, then pm(1 − p)k−1−m decreases with m dramatically. So that the larger k is,

any summing entry in X is much more larger than its corresponding (with same combinatory

coefficient) entry in Y . Therefore the larger k is, the much more larger X is than Y . This

shows that P
1
k increases with k roughly, i.e. low degree assets have generally lower prices than

high degree assets in period 1.

Average trader Unconditional Contagion Signal Crisis freq. con- Crisis freq. con-
degree crisis frequency extent frequency ditional on signal ditional on no signal

Fc Fs Fst Fsf
5.556 0.28120 0.99800 0.16740 0.56153 0.22484
6.111 0.13220 0.99900 0.19600 0.26837 0.09900
6.667 0.01880 1 0.18120 0.04967 0.01197
7.222 0.00660 1 0.20180 0.01685 0.00401
7.778 0.00220 0.99900 0.17020 0.00705 0.00121
8.333 0.00032 1 0.10636 0.00132 0.00020
8.889 0.00004 0.99900 0.05752 0.00035 0.00002
9.444 0 0 0.05874 0 0
10 0 0 0.00302 0 0

Table 2: Unconditional crisis frequency and frequency conditional on signal - modified model
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But in the modified model, not only choice of low degree assets becomes more difficult, the

more subtle difference between the prices of the two groups makes it more difficult to identify

the initial price drops since the stock market fluctuates constantly. So it would be desirable to

evaluate this result by empirical evidence to see if the signal can still be identified.

6 Contagion of boom/bubbles

All the processes we have discussed so far are fire sales and liquidations, which induce price

declines and crises. But imagine the reverse process, in which the initial positive shock to a

random chosen asset’s price could strengthen its shareholders’ capital, which induce them to

invest on other assets, which in turn will push up prices, and this contagion of boom/bubbles

could potentially spread all over the network. In a stock market boom, stocks prices appreciate

and people expect that expansion will continue, so they keep buying shares, which in turn

push up the prices further. The mechanism that works underlying is a positive feedback and

discussed by Adrian and Shin (2010), among others, and now we apply it in a network setting

and examine its consequences on complex financial systems. The feedback is shown in the left

panel in Figure 9 (taken from Adrian and Shin (2010)). Assume all traders maintain a constant

Adjust leverage

Asset price boom

Increase
B/S size

Stronger
balance sheets Reduce

B/S size

Adjust leverage

Asset price decline

Weaker
balance sheets

Figure 9: Positive feedbacks in booms and busts

leverage. When one asset’s price increases significantly, its shareholders have capital gains,

which reduce their leverage. These gains entitle them to borrow more to invest on other assets.

According to previous asset pricing formula, these new investment will boost up the prices

of those assets, which give further capital gain to shareholders of those assets. This process

can potentially go very far, thus an lead to a market-wide boom, which can be thought of as

bubbles in the stock market. The right panel in Figure 9 is the reverse procedure, which is the

downward process or contagion of fire sale we have discussed in previous sections.
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In the same networks used in simulations in Section 4.2, but assume initially all asset prices

are identical, which is P . According to our previous asset pricing formula, this implies that

10% of each asset is held by traders in the network. All traders initially maintain a leverage of

L. Randomly choose an asset and increases its price from P to rP (r > 1). If an shareholder’s

capital gain decreases her leverage by more than a tolerance (percentage) z, then she will borrow

more money and randomly choose an asset from all available assets to invest with the borrowed

money, so that her leverage returns to L; otherwise, she does not respond to the capital gain.

An asset is available if traders out of network still hold some shares, i.e. not all its shares

are already held in the network. The contagion stops when either no trader wants to buy any

shares or no asset is available any more (i.e. all assets are already entirely held by traders in

the network).

The contagion frequency and extent of boom exhibits a similar patter to contagion of fire

sale. In addition, low degree assets tend to get infected early and their price increase faster at

the beginning of the contagion, which, again, makes it a potential predictor of such a contagion.

(Simulations to be added).

7 Conclusion

In this paper I investigate the contagion of fire sale in complex bipartite networks of multiple

assets and traders. The initial idiosyncratic shock that forces an individual to liquidate can

potentially transmit across asset markets and spread to a large population, which causes a

huge market crash just like the crash in 1987. By compare the price drops of low degree assets

and high degree assets at the early stage of contagion, it can be show that the former is more

sensitive to contagion, i.e. their prices decline faster than the latter at the beginning of the

contagion. This suggests that the comparison of the two may give a signal that could be used

to predict the realization of contagion at its early stage. The simulation results show that the

signal is very efficient and can improve the accuracy of the prediction dramatically.

This method is then put in a modified model to examine its robustness and generality.

The reliability of the signal decreases considerably. The difficulties come from the choice of

appropriate low degree assets to include in the low degree group, as well as the small difference
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between the high/low degree asset groups when the whole market fluctuates. So it would

be desirable to evaluate the feasibility with empirical evidence. I further briefly discuss the

applicability of the method in the case of contagion of boom/bubbles.

This model provides a preliminary method to forecast the contagion of fire sale across asset

markets. It would be useful to test it in more general forms of networks, e.g. networks with

geometric/scale-free distributions, which are generally believed to be more consistent with the

real world financial systems. It may also be interesting to allow short selling so that the

predation would be more fierce, and this would allow a new link (temporarily) created in the

network and thus introduce more flexibility on the network structures. In the real world, it

is usually not a default on a bilateral loan (as discussed in Gai and Kapadia (2010)) or the

knock-on effect of fire sale alone that causes the trouble, but the combination of the two. It

might be possible to combine the two models to analyze the contagion on both channels, but

it remains to see whether it is technically feasible. I will leave these for future works.
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Appendix A: Gleeson’s method extended to bipartite net-

works

We describe how Gleeson’s method can be extended to the modified model, because it is easier
to characterize. Its version of the original model will be presented in later version of this paper.

Let us define that, each period of contagion has two sub-phases. A period starts with the
“trader phase”, in which infection transmits from traders to assets; then “asset phase” follows,
in which infection transmits the other way around. Imagine in period 0 a shock hits a randomly
chosen trader who is forced to liquidate all her portfolios. The probability that her degree is j
is pj. Total number of links is Sµ = Tν. So in period 0, the rate of new infection for links is
just f 0

2 = 1
Sµ

. This is the ”trader” phase. Now we enter the ”asset phase”. Since it is a random

network, the probability for any single link of any asset to be infected is f 0
2 . The probability

that a degree k asset has m links liquidated is in period 0 is

v0k(m) = Bk
m(ρ0), where Bk

m(p) =

(
k

m

)
pm(1− p)k−m (3)

Suppose now we have already calculated up to period t, and we are entering period t + 1.
In the “trader phase”, if an asset has m links liquidated, then its price declines by m

k
. Among

all the existing links (links not liquidated yet), the number of links with m
k

loss at period t+ 1
is

Ct+1
k (m) = Sqkv

t+1
k (m)(k −m)

The number of links with any positive loss is

Ct+1 =
∑
k

k∑
m=1

Ct+1
k (m)

The number of all existing links (includes both links with zero loss and those with positive loss)
is

Dt+1 =
∑
k

k∑
m=0

Ct+1
k (m) =

∑
k

k∑
m=0

Sqkv
t+1
k (m)(k −m)

So among all the existing links, the link infection rate is

f t+1
1 =

Ct+1

Dt+1
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again, by virtue of random networks. For links with positive loss, their losses are in varied
degree, but their average loss in period t+ 1 is

st+1 =

∑
k

∑k
m=1

m
k
Ct+1
k (m)

Ct+1

Now we consider the threshold, M t+1
j of number of infected links for traders of degree j above

which the trader will go bankrupt. Approximating the situations by using the average loss st+1,
and assuming the initial value of all links is just 1, the bankruptcy happens when nst+1

j
> 1

L
,

where n is the number of infected links. This gives M t+1
j = n = j

st+1L
. The probability that a

j degree trader survived previous period and now has n infected links is

ut+1
j (n) =

min(n,Mt
j )∑

l=0

Bj−l
n−l(f

t+1
1 )utj(l)

Then we have the unconditional bankruptcy rate of j degree traders in period t+ 1 as

ρt+1
j = 1−

min(j,Mt+1
j )∑

n=0

ut+1
j (n)

and the overall bankruptcy rate
ρt+1 =

∑
j

pjρ
t+1
j

Now we enter the “asset phase” of period t+ 1. Given the above infection, some agents go
bankrupt and the total number of newly liquidated links is

Et+1 = T
∑
j

jpj(ρ
t+1
j − ρtj)

Right before these liquidations, the total number of all existing links is

F t+1 = T
∑
j

jpj(1− ρtj)

So the link infection due to new liquidation is

f t+1
2 =

Et+1

F t+1

After these liquidations, asset prices decline again, and in particular those whose price depressed
more than half will be further depressed to zero. The probability that a k degree asset has
(accumulated) m liquidated shareholders is

vt+1
k (m) =

m∑
l=0

Bk−l
m−l(f

t+1
2 )vtk(l) , m ≤ k

2
(4)

vt+1
k (k) = vtk(k) +

k∑
κ=1

ṽt+1
κ (m)

where ṽt+1
k (m) =

b k
2
c∑

l=0

Bk−l
m−l(f

t+1
2 )vtk(l), m >

k

2

Repeat above procedure recursively until the overall bankruptcy rate converges, i.e. the
difference between the overall bankruptcy rates of two adjacent time periods, ρtj and ρt+1

j , is
smaller than some threshold, then the contagion process can be thought as having ended.
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