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1 Introduction

The current state of higher education in sciences and engineering (S&E) in the US has

recently become of concern. In particular, policy makers, economists and scientists1 debate

whether the system is adequate to sustain and improve the country’s competitiveness in

global innovation, Jackson (2003), Freeman et al. (2001), Freeman (2005). More recent

re-assessments of the issue suggest that, contrary to some studies, training rates in S&E

programs are growing, and labor market data provides no evidence of a shortage but rather

of an excess supply of scientists, Butz et al. (2003), Mervis (2003), Teitelbaum (2004).

Ensuring high graduation rates from S&E programs, however, is not sufficient to guaran-

tee retention of high quality specialists in S&E professions. Studies find that a large fraction

of S&E baccalaureates work in non-S&E jobs, Lowell and Salzman (2007), Preston (2004).

This fact may or may not be of big concern since undergraduate education to a large degree

is supported with private loans and savings. At the graduate, and especially doctoral level,

attrition from S&E becomes more of a problem since graduate training is predominantly

financed with public funds, and, therefore, is costly, Thurgood et al. (2006).

It is found that a large fraction of doctoral research skills are employed outside R&D,

Mishagina (2007). In 2001, only 55 percent of S&E doctorates worked in R&D-related tasks,

and about 22 percent have never worked in R&D in their life. Employment choices vary

throughout a career: Doctorates start their careers in R&D (72 percent) but only 45 percent

are still in R&D thirty years later. Finally, about 8 percent works in tasks previously thought

unsuitable for S&E doctorates such as financial and other business services, which presents

a dramatic career change. These facts suggest that the doctoral skill set including the level

of their technological advancement is marketable outside S&E, which facilitates outward

mobility when the relative values of employment options change. These changes in career

prospects in sciences can be caused by the overproduction of doctorates, the decrease of R&D

funding, or falling demand due to outsourcing, Freeman et al. (2001), Lowell and Salzman

(2007). Effective policies aimed at the retention of doctorates require understanding the

economics behind their career choices.

The observed career dynamics of the S&E doctorates present the following puzzle: The

1“Is the US Party Over?” by Robert Palazzo (Rensselaer Polytechnic Institute) in “The Scientist”,
Volume 25(2), 2008.
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first part of the puzzle is that high employment rates in R&D early in a career are ac-

companied by the lowest starting salaries in R&D relative to other employment options.

The second part concerns the attrition from R&D with age. The transition rates out of

R&D are non-monotonic and accompanied by the rapidly growing earnings of those who

stay. The standard model of self-selection - where ability is known - is unable to explain

the observed behavior. The first part of the puzzle cannot be reconciled with the static

occupational choice model unless large non-pecuniary benefits are present. Sociology and

economic literature concerned with the motives of researchers and the reward structure in

sciences traditionally emphasizes that scientists extract high psychological satisfaction from

engaging in research, termed as “the joy of puzzle-solving” or “the taste for science”, Stern

(1999), Levin and Stephan (1991). The magnitude of these psychological benefits, however,

must be enormous to generate the observed employment rates in R&D early in the career

considering the value of relative earnings. In the absence of self-selection, they should cover

the difference between earnings in R&D and other tasks: $9,540 a year compared to applied

tasks (or 27 percent of annual earnings in R&D) and $13,000 a year or 35 percent respectively

compared to non-S&E. Alternatively, the dynamic occupational choice model would suggest

that there is an investment motive of engaging in R&D. For example, R&D can provide

training that pays either later on in R&D (Moen (2001)) or in other tasks, thus serving as

a “stepping stone job” (Jovanovic and Nyarko (1996)).

Neither of these possible explanations, however, is consistent with the second part of

the puzzle, namely high exit rates and large earnings growth for the stayers. First, high

non-pecuniary benefits do not explain why individuals leave R&D unless these benefits are

decreasing with time. Second, if R&D compensates for early losses in earnings due to train-

ing, it is not clear why researchers would leave exactly when they begin to receive a return on

their training. If, however, they receive this return performing tasks other other than R&D,

their earnings in R&D should exhibit the lowest profile compared to the earnings in other

tasks. Finally, an alternative explanation to decreasing participation in the profession with

age could be related to decreasing productivity with age, which makes the profession “the

game of the young”. This case is best illustrated by careers of professional athletes whose

performance falls due to the inability of an ageing body to meet the physical demands of
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the sports. However, the studies of the productivity of academic scientists found no conclu-

sive evidence that productivity measured in publications or citations falls with age (Stephan

(1996)), and the productivity of non-academic scientists has never been studied. In addition,

the “game of the young” would manifest itself in the large curvature of the earnings profile

and would imply large negative coefficients at the quadratic term in the wage equation2.

However, average earnings in R&D do not have an early peak but rather grow very rapidly.

This paper provides the following explanation for the observed phenomenon: Productiv-

ity in R&D compared to other tasks strongly depends on one’s talent to do research. This

talent ex ante is not known with certainty but can be learned by engaging in R&D. There-

fore, incomplete information about one’s talent drives young researchers into R&D. Later on

it forces those with low realized ability to leave the task, while the survivors in R&D enjoy

the high growth of earnings. Research talent comes into play in two ways: directly through

the ability to pose novel research questions and indirectly through accumulated research

capital that allows to complete the research projects. The research capital can be thought

of as research skills or developed scientific reputation in the field, which evolves differently

for people with different levels of ability: it accumulates faster (depreciates slower) for re-

searchers with higher level of ability. This way even small differences in research ability can

generate large differences in productivity over time.

To test the proposed hypothesis and to study the responses of the supply of research

skill to changes in the economic environment, the paper develops and estimates a dynamic

occupational choice model with symmetric learning about R&D ability and stochastically

evolving human capital. Using information on their endowments of task-specific abilities

and skill prices, individuals specialize in tasks related versus unrelated to S&E. Tasks within

S&E are of two types: a) creation of new knowledge through R&D and b) application of

accumulated scientific knowledge through teaching or professional services. The types of

tasks differ in their skill requirements and private returns. Ability to produce scientific

breakthroughs is incomplete information until the individual engages in research. While in

research, ability is revealed with some probability. Research-related human capital evolves

2While many studies report the decreasing performance of athletes with age, an actual decrease in earnings
is not well documented.
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stochastically: More talented researchers have higher probability to upgrade their research

capital while in research. They are also less likely to lose it during research employment

interruptions. This can be thought of as a simple way to incorporate dependence on past

performance.

Note that this paper defines “career” as a sequence of tasks rather than occupations.

This approach is based on the findings that some scientific occupations involve little to no

actual involvement in R&D, which is the main interest of policy analysis, Mishagina (2007).

Moreover, it was found that a traditional “research career” implies switching away from R&D

tasks to other activities. For example, it was found that academic scientists tend to spend

less time in R&D and more time teaching or consulting after being tenured, Mishagina

(2007). Therefore, if one is interested in studying participation in R&D, conditioning on

occupations rather than tasks can be misleading. For example, a switch from industrial to

academic research would be recorded as a switch from “scientist” to “post-secondary teacher”

and would be mistakenly considered as “leaving research”. Alternatively, promotions would

be recorded as a switch from “scientist” to “manager” and would be considered as a “career

change”. Conditioning on tasks disentangles mobility due to promotions or sectoral changes

as long as an individual is still mainly involved in research on the main job. Finally, mobility

described in this paper does not happen due to firm-to-firm mobility, which mainly occurs

due to up-or-out contracts in academia. As long as scientists spend most of their time in

research, mobility from one university to another is not considered a career switch.

The assumption of unknown research ability early in the career and stochastic learning

adopted in the paper are not unintuitive. Scientific projects are the results of the collab-

oration of multiple researchers. For example, the average number of authors per article in

academic biochemistry is 2.90, and in physics 3.6, [Stephan (1996), Preston (2004)]. When

observing the final output of a team, it is not straightforward to infer the contribution of

each team-member. Individual productivity, and therefore ability, can only be inferred if the

person engages in an individual project or becomes a group leader. Therefore, the probability

of learning assumed in this paper can be thought of as a probability of receiving a chance to

engage in such a project. The latter can be possible if individuals receive a research grant or
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access to research facilities early in their career. Therefore, a higher probability of learning

can be related to improvement in the access to research funding either because of an overall

increase in available resources or a decrease in grant competition.

The dependence of R&D productivity on past performance has been previously empha-

sized in the S&E literature. Stephan (1996) suggests that the survival of scientists in research

depends on their ability to achieve a “critical size within a limited time frame”, similarly

to the survival of new firms. Resources in sciences are highly competitive and conditional

on a variety of factors, one of which is the novelty of the research project and the scientific

reputation of the investigator. Through acquiring resources scientists can develop more am-

bitious projects and gain scientific reputation in their field. High reputation, in turn, lets

them “keep their place in the funding queue” and grow further. This generates cumulative

advantage and a growing gap between researchers with different levels of research ability

reflected in scientific productivity parameters such as citations, publications, and earnings,

Diamond (1986), Neal and Rosen (2000). In addition, it was found that accumulated knowl-

edge depreciates fast, McDowell (1982). Therefore, research career interruptions are costly

to doctorates. The speed of research human capital depreciation is assumed to be slower for

more talented researchers, which also contributes to the gap in productivity.

The model is fit to the rarely used Survey of Doctorate Recipients (SDR), a longitudinal

data set on employment histories and earnings of doctorates educated in the US. The data

have been collected biennially by the National Science Foundation since 1973. The survey is

unique because of its longitudinal nature and large sample size. Doctorates constitute only

0.5 percent of the labor force, and therefore would be represented by a handful of observations

in national surveys. The SDR follows doctorates regardless of their labor force status and

employment sector as long as they reside in the US and are under the age of 76. This

makes it possible to study their career choices even if they quit S&E. In addition, it contains

rich employment information specific to S&E. The parameters of the model are estimated

using the Method of Simulated Moments. Empirical moments on career histories, earnings,

and transitions of 23,700 doctorates in Life Sciences are matched with the corresponding

simulated moments predicted by the model.
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The main finding of the paper is that information about research ability plays an impor-

tant role in explaining the observed career dynamics. Under the full information scenario,

participation in R&D falls for young scientists by 44 percent, and lifetime participation in

R&D by 20 percent. At the same time the average quality of the supplied skill and reten-

tion in R&D dramatically improve. Full information allows individuals to make optimal

decisions from the very beginning of their careers and improves their expected discounted

lifetime value. The effect of incomplete information intensifies with the rate of information

arrival, which in this paper is related to funding possibilities. Faster learning increases par-

ticipation in R&D, the quality of the retained skill due to the faster attrition of the lower

ability researchers and an increase in the discounted lifetime value of the individuals. Next,

the predictions of the model are used to understand how the supply and quality of research

labor responds to changes in the economic environment and availability of its outside options.

This is important for designing and evaluating policies aimed at the retention of talented

scientists and engineers in R&D. Using the estimates of the model parameters, I evaluate

the effects of R&D subsidies and changes in the employment options outside S&E. I find

that the supply of research skill is sensitive to changes in relative skill prices in- and outside

R&D. This finding contradicts previous results that the supply of S&E skill is inelastic.

This paper is related, first of all, to the literature on the economics of S&E such as

Stephan (1996), Freeman (1975), Ryoo and Rosen (2004), Majumdar and Shimotsu (2005).

In particular, it contributes to the studies of the S&E workforce; for example, Ferrall (1997),

Biddle and Roberts (1994), Zucker and Darby (2006), and Fallick et al. (2005). The first

novelty of this study is its explicit modelling of selection into S&E tasks previously taken

as exogenous. The second is its consideration of employment options outside S&E as part

of the choice set. The third contribution is the possibility to use the model to analyze the

behavioral responses of doctorates to various policy changes. This paper is also related to

the general literature on occupational choices such as the static self-selection model by Roy

(1951) and Heckman and Sedlacek (1985), dynamic models by Keane and Wolpin (1997),

Miller (1984), and their application to specific professions. Examples of the latter are the

study of careers of lawyers by Sauer (1998), politicians by Keane and Merlo (2007) and

Diermeier et al. (2004), and secondary school teachers by Stinebrickner (2001). The latter
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study and Scafidi et al. (2007) are especially closely related to this work because they address

similar issues. In particular, both papers assess the timing and reasons for the attrition

from teaching professions, including switching to non-teaching occupations which constitutes

career changes. The model developed in this paper is not specific to scientists and can be

applied to study career decisions in other professions, where dependence on past performance

and high ability are the key features, such as performing arts or sports.

The remainder of the paper consists of four sections. The model and its numerical solution

are outlined in Section 2. It is followed by the description of the data, stylized facts on the

career dynamics of doctorates, and the estimation algorithm. Section 4 presents estimation

results and several counterfactual experiments. The final section concludes and proposes

directions for further research on the topic.

2 Model

In this section I describe the theoretical dynamic model of the occupational choices of S&E

doctorates. The second part of the section describes the algorithm for the numerical solution

of the model.

2.1 Basics

Time is discrete and indexed by t. A scientist begins to make decisions when he becomes

a PhD. The decision to become a PhD and the choice of the field are taken as exogenous.

Individuals are also assumed to graduate at the same age and not to time their graduation

to the labor market conditions. A scientist is active on the labor market for T periods, which

is assumed to be deterministic and the same for everyone. At T + 1 everybody exits the

market with probability 1 and never returns. At the current stage, I capture retirement as

random attrition out of the sample with task-specific probability φi starting at period 10.

Each individual is endowed with three types of abilities: research-related, denoted as

R; applied, A; and unrelated to S&E tasks, N . “Research” ability can be thought of as a

talent to pose novel research questions and generate interesting ideas. “Applied” ability is a
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talent to “sell” or apply existing knowledge to given problems and tasks rather than posing

new ones. Finally, non-S&E ability can be thought of as people skills or general analytical

abilities. These abilities are assumed to be constant over the individual’s career. Denote

the vector of person i’s ability endowment as x = (xR, xA, xN), with (x∼N(µ, Σx)), where

µ = (µR, µA, µN), and

Σx =




σ2
R σRA σRN

σ2
A σAN

σ2
N




I allow for abilities to be correlated but do not explicitly impose the sign of the correlation

coefficient. The parameters of the ability distribution (µ and Σx) are model parameters to

be estimated. These intrinsic abilities are the only source of ex ante heterogeneity in the

model3.

Suppose also that there exist three tasks: research (r), application of existing scientific

knowledge (a), and some combination of non-S&E tasks (n). Throughout the paper, capital

letters are used to indicate the type of ability, and small letters to indicate the corresponding

task. Hereafter I assume that the three types of abilities are supplied inelastically, that is,

an individual supplies his entire endowment xm, if he chooses occupation m.

2.2 Learning and the evolution of human capital

It is assumed that xA and xN are common knowledge, while xR is ex ante unknown to

anyone. It can be symmetrically learned with probability δ if the scientist engages in R&D.

For individuals who never worked in R&D xR can be inferred from the observed realizations

of xA and xN and the parameters of the skill distribution, which are public knowledge.

Denote the perceived level of research ability xR as x̃R, and let τ be an indicator that xR

has been revealed. Then:

x̃R(τ) = τ(δ)xR + (1− τ(δ))E[xR|xA, xN ] (1)

3Due to the limited data access described later, incorporating the characteristics of observed heterogeneity
at this stage is impossible.
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It is assumed that learning about research ability evolves according to:

Pr(τ ′ = 1|τ = 0) = δI(d = r) (2)

Pr(τ ′ = 1|τ = 1) = 1 (3)

That is, conditional on employment in research, individual’s research ability is revealed with

probability δ. Once research ability has been learned it remains public knowledge forever.

It is assumed that research ability gets revealed through an individual research project or

the possibility of leading one. It is assumed that this chance is higher for scientists who are

believed to be more productive (e.g. research grants that are crucial for individual projects

are easier to obtain for scientists with a better research record or higher expected quality of

the project and the probability of that project to become a breakthrough ceteris paribus).

Therefore, the probability of discovering one’s true research ability is increasing in one’s

perceived ability:

δ(x̃R) =
exp(δ0 + δ1x̃R)

1 + exp(δ0 + δ1x̃R)

Productivity in each task m, is a function of the task-specific ability, xm, and accumulated

human capital, hm. The former is constant throughout career, while the latter evolves

according to the following technology:

Pr(h′m = hm + 1) = fm(x̃m)I(d = m),∀m (4)

Pr(h′m = hm − 1) = gm(x̃m)I(d 6= m),∀m (5)

In applied and non-S&E tasks the evolution of human capital is standard as in Keane and

Wolpin (1997), i.e an additional period of employment these tasks increases the corresponding

task-specific human capital by one unit and there is no skill depreciation (i.e. fm(x̃m) =

1, m = a, n and gm(x̃m) = 0, m = a, n).

This process is different for research-specific human capital: It is assumed to change

at various rates for individuals with different levels of research ability. Modelling human

capital growth conditional on the past performance explicitly would require an introduction

of a continuous state variable, which would complicate the solution of the model. At this

stage I model the technology for hr to change stochastically by one period, which makes hr
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a discrete variable as are ha and hn.

f r(x̃R) =
exp(γf0 + γf1x̃R)

1 + exp(γf0 + γf1x̃R)

gr(x̃R) =
exp(γg0 + γg1x̃R)

1 + exp(γg0 + γg1x̃R)

Thus, human capital appreciates slower for lower ability researchers. Since human capital

is assumed to change stochastically only in research, the task superscript is dropped for the

remainder of the paper.

2.3 Earnings

Earnings in task m, wm, is the product of an individual’s total skill of type m, sm, and the

rental price of a unit of skills, rm:

wm = rmsm (6)

= rm exp(x̃m +
∑

i=r,a,n

α1mhi −
∑

i=r,a,n

α2mih
2
i + εm), (7)

where x̃ = (x̃R, xA, xN), and ε = (εr, εa, εn) is the vector of idiosyncratic serially-uncorrelated

productivity shocks. The shocks are assumed to be normally distributed ε ∼ N(0, Σε), where

Σε is assumed to be diagonal, that is, shocks are uncorrelated across tasks. Note that the pre-

PhD experience is not included in the wage equation. The first reason for that as reported by

Thurgood et al. (2006), pre-doctoral experience is very infrequent. The data set used in this

study does not provide information on the pre-doctoral experience. The second reason for

that is given by several studies who found no significant returns to pre-doctoral experience

in the earnings of PhDs.

Individual’s state in period t is described by the vector S:

S = {τ, x̃, h, pd, t} (8)

The state vector consists of the following components: an indicator that the research ability

has been revealed τ , the vector of perceived ability x̃, the vector of accumulated task-specific

human capital h = (hr, ha, hn), last period employment choice pd, and an individual’s age t.

The next period’s state space, S ′ is given by:

S ′ = {τ ′, x̃′, h′, d, t + 1} (9)
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where τ ′ and h′ = {h′R, h′A, h′N} evolve according to the laws of motion described by (2) and

(4) respectively.

Each individual’s preferences over task choices d given their state S are represented by a

a utility function u(S, d):

u(S, d) = w(S, d) + bd + cpd,dI(pd 6= d) (10)

where w(S, d) is a wage offer as described above, bd is a choice-specific non-pecuniary benefit,

and cpd,d is a transition-specific switching cost from task pd to task d if pd 6= d.

Non-pecuniary benefits bd are expected to capture non-wage and other benefits as well

as personal preferences to perform different tasks. For example, many studies of the orga-

nization of science describe research as a puzzle-solving activity where the very process is

in itself a reward to its participant, Stephan (1996). Several studies found the evidence of

this reward in the life-time earnings of scientists, Stern (1999), Levin and Stephan (1991).

The latter study includes the “taste” for puzzle-solving directly into the scientist’s utility

function in addition to accounting for the monetary benefits research activity brings through

the enhancement of the total human capital. The switching costs are expected to account for

the adjustments caused by changing tasks. For example, switching from primarily teaching

to research would require “catching up” on the recent findings in the area. Alternatively,

switching from non-teaching to teaching would require preparing a course outline, assign-

ments and other materials. The non-pecuniary benefits and switching costs are assumed to

be time-invariant and the same for all individuals. They are also assumed to be known to

all but unobserved by the econometrician.

Every period t individual i observes the vector of state variables S and chooses task

di ∈ D to maximize his discounted expected utility. Define a career path as the sequence of

task choices each period from some age t until the last period T . Denote it as d̃t = {d(i)}T
i=t,

where d(i) ∈ D, ∀i. Denote also the family of all possible career paths as D = {d̃t, ∀t}. The

individual’s problem is to choose a career path d̃ ∈ D to maximize his discounted expected

lifetime utility:

max
d̃t∈D

Eε

T∑
i=t

βi−tu(S, d), (11)
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where u(S, d) is as described above and β ∈ (0, 1) is a discount factor.

Each period the scientist chooses a task d ∈ D with value:

v(d, S) = u(d, S) + βEεV (S ′) (12)

where

V (S ′) = max{v(r, S ′), v(a, S ′), v(n, S ′)} (13)

The value in R&D depends on whether the information about the research ability has

been revealed (τ = 1) or not (τ = 0). If the ability has not been revealed, the value function

in R&D is defined by:

v(r, 0, x̃, h, pd, t) = u(r, 0, x̃, h, pd, t)

+ βEε{δExR|xA,xN
V (1, x̃′, h′, r, t + 1)

+(1− δ)V (0, x̃, h′, r, t + 1)}

where the right-hand side reflects that with probability δ it will be revealed after one period

and 1 − δ it will not. To evaluate V (1, x̃′, h′, r, t + 1), possible realizations of xR are drawn

from the conditional distribution f(xR|xa, xn) and the expectation of the future values over

all xR is calculated. If the ability is not revealed after one period, the perceived ability x̃R

remains unknown and the value function is calculated based on its expected value conditional

on the known endowments of the other two abilities. In this case the value function in R&D

is given by:

v(r, 1, x̃, h, pd, t) = u(r, 1, x̃, h, pd, t) + βEεV (1, x̃, h′, r, t + 1)

In either case, the value in R&D also reflects whether the research human capital will be

augmented or not:

V (τ ′, x̃′, h′, r, t + 1) = π+1V (τ ′, x̃′, hr + 1, ha, hn, r, t + 1)

+ (1− π+1)V (τ ′, x̃′, h, r, t + 1)), τ ′ = 0, 1

where h̃r = {hr + 1, ha, hn}.
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The values of the two other tasks depend only on whether the R&D capital will depreciate

or not. Thus, the value in applied task is given by:

v(a, τ, x̃, h, pd, t) = u(a, τ, x̃, h, pd, t) +

βEε{π−1V (τ, x̃, hr − 1, ha + 1, hn, a, t + 1)

+(1− π−1)V (τ, x̃, hr, ha + 1, hn, a, t + 1)}, τ = 0, 1

and in non-S&E by:

v(n, τ, x̃, h, pd, t) = u(n, τ, x̃, h, pd, t) +

βEε{π−1V (τ, x̃, hr − 1, ha, hn + 1, n, t + 1)

+(1− π−1)V (τ, x̃, hr, ha, hn, +1, n, t + 1)}, τ = 0, 1

2.4 Numerical solution

Since the individual optimization problem is finite it is solved recursively starting at T . The

terminal value, vT , is assumed to be equal to zero for all individuals regardless of their state:

v(d, S) = 0, ∀S : t = T + 1.

Define the expected term in the value function 12 as Emax:

Emax(S) =

∫

ε

V (S ′)f(ε)dε (14)

Due to the assumption of normality of the productivity shocks, the integral in equation

14 does not admit an analytical solution but can be evaluated numerically. The expected

values of the value function is approximated through simulation using a simple frequency

simulation method. For computational reasons the distribution of the shocks is discretized

with Rε points of support with Rε being fairly large4. Let εl = (εl
r, ε

l
a, ε

l
n) be a l’th draw

from the trivariate normal distribution with mean zero and a given variance-covariance

matrix, where εl = (εl
r, ε

l
a, ε

l
n), and let εl : l = 1, 2, ...Rε be the matrix of these draws.

For each of these draws I construct simulated approximations for the Emax function. Define

Ṽ l(S) = max{vl(r, S), vl(a, S), vl(n, S)}, where vl(d, S) is a choice-specific value function

4In this paper I chose 500 points
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evaluated at εl. Then the Emax(S) is calculated as:

Emax(S) =
1

Rε

ΣRε
l=1Ṽ

l(d, S) (15)

Since the terminal value is assumed to be equal to zero, in the final period T , the approxi-

mation is given by:

Emax(S) =
1

Rε

ΣRε
l=1u

l(S, d) (16)

In each period prior to T the Emax(S ′) function in the next period is already known and

can be used in the evaluation of the Emax(S) in the current period:

Emax(S) =
1

Rε

ΣRε
l=1{ul(S, d) + βEmax(S ′)} (17)

The distribution of types was also discretized to have 700 points (types). Each type is

represented by a triple describing the individual’s endowment of the abilities of three types,

x. Each type is therefore a draw from the trivariate normal distribution with the parameters

defined by the values of µ and Σx. Types were re-drawn every time the distribution param-

eters changed. For the matrix of the values of abilities x the matrix of Emaxwas calculated

by recursively solving the problem for each feasible state for each type. By discretizing the

continuous variables ε and x and assuming stochastic evolution of the human capital in re-

search, the state space becomes a grid of 20,250 points for each type for 15 periods. The

grid includes some states that will never be visited by an individual and can therefore be

excluded to reduce the dimensionality of the problem. The solution of the model involved

searching over the feasible points and did not require polynomial approximation as compared

to Keane and Wolpin (1994).

Because the state space is now discrete, the choice probabilities have to be smoothed.

The smoothing is done by weighting the value of the actions compared to the value of the

state by some parameter ρ after solving the optimization problem:

P(d = m) =
exp(ρ(V (m,S)− Emax(d, S)))∑

i exp(ρ(V (i, S)− Emax(d, S))
(18)
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3 Estimation

This section outlines the estimation procedure and the data set used in this paper. It also

provides the stylized facts on the career choices of scientists and engineers, occupational

transitions and earnings.

3.1 Data

The model is estimated using the Survey of Doctorate Recipients (SDR), collected biennially

by the National Science Foundation since 1973. This longitudinal survey includes individuals

who graduated from the US doctoral programs in S&E and resided in the US at the time

of the survey. They were followed from the moment of their graduation until the age of

76. In the original 1973 survey, the target population included graduates between 1930

and 1973. With every survey, a fraction of new graduates are added, and some of the

previous respondents are removed from the survey because they reach the age of 76 or for

sampling reasons. Information on these individuals is obtained from the Doctorate Records

File (DRF) maintained by the NSF. The primary information for the DRF is the Survey of

Earned Doctorates, a one-time census type survey on all doctorates from the US institutions

in S&E or health fields collected at the time of their graduation. Since the latter started

in 1957, the information source on the graduates prior to 1957 are taken from a registry on

highly qualified scientists and engineers. The latter is assembled by the National Academy

of Sciences from university catalogues, federal laboratories, and other sources. This way, in

2001 the survey had a sample of 40,000 individuals representing 650,000 doctorates under the

age of 76 residing in the US. Due to the information collection techniques (multiple follow-ups

and phone interviews), the survey has very high response rates (80 percent). This potential

source of error is adjusted in the survey using the weights. This paper bases its analysis on

the weighted data. Non-response rates for the employment and personal information used

in this paper are low (0-1.2 percent and 0-2.7 percent respectively).

The survey is unique, first of all, because it provides information on the group of pro-

fessionals that is small relative to the population. Due to this problem, other data sets

(e.g. CPS) would have a very small number of individuals with PhD degrees. Secondly, the
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data in the SDR is longitudinal, and allows following the individuals as their careers unfold.

Finally, the survey asks about academic achievements and other profession-specific informa-

tion usually unavailable in the general type surveys. There exist several studies that used

other data sets, primarily collected by the authors, for example, Mangematin (2000), Robin

and Cahuzac (2003), Gaughan and Robin (2004), Oyer (2005), Diamond (2001), Grimes and

Register (1997). Those data sets were constructed by the authors using individuals’ CVs

posted on academic websites. The advantage of this approach is that it allows to construct

complete employment histories and to have full productivity parameters not available in the

SDR. Unfortunately, I could not follow their example or use one of their data sets because

of the small number of observations (at best a few hundred individuals). Another drawback

of these data sets is their focus on the academic careers in contrast to the SDR that includes

doctorates regardless of the relevance of their employment to the S&E, which provides crucial

information for the purposes of this study.

The major interest to this paper were employment records. They contain information on

the employer (e.g. geographic region, detailed sector, size, type of industry), occupation and

its relevance to the PhD major, primary and secondary activities (i.e. “activities that occupy

most time on a typical work week”), information on professional activities (membership in

scientific societies, participation in conferences), as well as scientific productivity (publica-

tions and patents). Unfortunately, the questions on publishing and patenting activities were

asked only in selected years (1983, 1993-2001), and referred only to two years preceding the

survey. Due to very low response rates to these questions it was impossible to infer the total

number of publications and patents even for a small subsample of individuals. For these

reasons, direct scientific productivity variables were not used in this study. The survey was

designed to collect information only about employment at the time of the survey.

Because the retrospective information on employment was not available, career histories

were constructed using available data for the individuals who responded to more than two

consecutive surveys and provided enough information to assign them to one of the three

tasks5. The resulting subsample consists of 23,700 individuals whose personal and job char-

acteristics are described in the last column of Table 6. Individuals in the subsample are more

5The assignment principles are described in more detail in Appendix 1
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likely to be white US citizens. They are more likely to be men although the participation

of women in Life sciences is the highest compared to other disciplines. Academia employs

roughly 60 percent of all individuals, and private sector accounts for another 30 percent.

Roughly 45 percent of the academics were tenured and another 17 percent held tenure-track

appointments. Finally, 10 percent of all doctorates were employed as postdoctorates and

another 23 percent held temporary academic appointments.

Individuals in the sample were assigned to one of three tasks: two tasks in the S&E

sector, and the third type includes tasks unrelated to S&E. I distinguish between S&E

and non-S&E tasks to pin down the “career changes”. Within S&E all occupations are

divided by the primary task: creation of new knowledge, further referred to as “R&D” and

the application of accumulated knowledge or “application”. The non-S&E types includes

tasks that are not directly related to sciences and engineering, for example, financial- or

other non-technical business services. To assign individuals to one of three tasks I used

information about their primary activities6, and the industry of the employer. The principles

of assigning individuals to different tasks are outlined in more details in Appendix 1. The

detailed empirical analysis of career choices, their relevance to S&E, and career transitions

are presented in the companion paper, Mishagina (2007).

3.2 Stylized facts on career choices, transitions, and earnings

This section provides the stylized facts on career dynamics and the earnings of Life Sciences

doctorates. The latter group includes agricultural and food scientists, biologists and bio-

chemists, environmental and health scientists. Table 6 compares individuals in three tasks

by observed personal and job characteristics7. As can be noted, the main difference comes

mostly from average age. Scientists employed in non-S&E tasks are on average older (48.50

versus 45). They are also more likely to be married (0.67 versus 0.47) which is probably

related to their being relatively older. Scientists in R&D are slightly more likely to come

6Primary activity in the questionnaire is defined as “activity that occupies most time in the typical work
week”. Individuals were offered to choose from a list of 14 activities. For more detailed information on this
and other variables see Mishagina (2007).

7Descriptive statistics are shown to compare individuals in different tasks. However, these characteristics
are not used in the estimation due to the data access limitations.
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from private Carnegie Research I and II universities. The fraction of graduates from the top

schools8 is also higher in R&D than in applied jobs but similar to that in non-S&E. Next,

there is a difference by citizenship status. The fraction of temporary residents in non-S&E is

smaller compared to R&D. This difference may be attributed to age differences as temporary

residents receive green cards if they stay in the US. Alternatively, immigration policy may

have different policies about hiring foreigners or assisting them with green cards in different

tasks. Similarly to the first argument, there are fewer permanent residents in non-S&E and

more naturalized citizens. Finally, doctorates in non-S&E tasks are more likely to have pre-

PhD degrees in non-S&E fields, which may suggest their preference towards non-S&E tasks

or task-specific skills.

R&D tasks are distributed mostly between industry (0.48) and academia (0.40), while

applied jobs are more likely to be academic (0.68), which captures teaching activities. All

postdoctorates in the sample are concentrated primarily in the R&D tasks. Academic re-

searchers are more likely to be employed in Carnegie Research I/II universities compared

to those in applied tasks (0.601 versus 0.337 respectively). In non-S&E, the fraction of

academics in Carnegie Research I/II is also high, but they are employed in non-S&E de-

partments (see assignment principles in Appendix 1). Finally, more academics in R&D hold

temporary positions other than postdoctoral appointments when compared to other tasks

(0.484 versus 0.277 versus 0.36).

Figure 1 show the participation rates of the Life sciences doctorates in each of the three

tasks by time since graduation. The first observation is that career choices vary throughout

career. Doctorates tend to start their careers in R&D (72 percent) but over time they leave

R&D for applied and non-S&E tasks so that after 30 years since graduation only 45 percent

of the doctorates are still employed in R&D. Non-S&E tasks account only for 3 percent of

the newly minted doctorates, but after roughly 15 years since graduation employment in

non-S&E grows to 10 percent. This fraction remains constant until the rest of the career,

while the participation in applied tasks continues to grow. In addition to the individuals

who start their careers in R&D, another 6 percent join the task later in the career. The

difference between the two numbers suggests that late entries into R&D are costly. Finally,

8CalTech, UC Berkeley, Stanford, MIT, Harvard, Princeton and Yale.
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the remaining 22 percent of scientists never work in R&D in their entire career.
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Figure 1: Employment rates of life science doctorates, by task and years after graduation.

Figure 2 presents lifetime earnings profiles by the choice of employment in constant 2001

dollars. It can be seen that individuals employed in R&D early in the career have the lowest

starting salaries relative to the other tasks. On average, researchers start with $35,500

a year which is consistent with the finding that many life scientists start their careers in

postdoctoral and other non-faculty appointments with relatively low salaries, Stephan and

Ma (2004). These earnings are on average 26 percent and 35 percent lower than those in

applied tasks and non-S&E ($45,000 and $48,000 respectively). However, R&D salaries grow

and catch up with those in applied tasks by the fifth year after graduation, and with those

in non-S&E by the thirteenth year. At the end of career, the R&D earnings dominate those

in application and non-S&E by 21 percent and 14 percent respectively. Overall, “stayers” in

R&D experience a 180 percent growth of earnings by thirty years after graduation compared

to 80 percent growth in both applied tasks and non-S&E.

Some studies explain low starting earnings in R&D relative to those later in the career
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to be a payment for the on-job-training, Moen (2001). This however does not explain why

scientists leave R&D if they expect higher returns on the investment. It seems to be more

likely that the high growth of the salaries is caused by the outward selection of those with

lower ability and thus lower earnings. In order to better understand the nature of the

mobility, the transition rates between tasks are next analyzed.

10.2

10.6

11

11.4

11.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

yrs after graduation

Log annual

salary

in constant $2001

research application nonS&E

Figure 2: Lifetime earnings profiles (log) in constant 2001 dollars, by task

The empirical transition rates shown on Figure 3. The transition rates are calculated

as the number of individuals who switched tasks after t years of task-specific experience

over the total number of the individuals still employed in the task of origin by the year t.

The first observation is that transition rates vary in their shape and timing by origin and

destination. Mobility between S&E-tasks is higher than mobility out of S&E and differs in

pattern. The transitions from R&D to application have several pronounced peaks: at 4, 10,

and 18 years on the task. Mobility from applied tasks to R&D is monotonically decreasing,

which suggests that returns or late entries to research are rare. Transitions into non-S&E
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Figure 3: Empirical transition rates within- and out of S&E.

are single-peaked at about 10-12 years on the task and do not substantially vary by origin

until later in the career. This observation proposes that non-S&E employers value research-

and applied skills and experience in a similar fashion.

The timing of the transition rates out of research early in the career suggests that mo-

bility may be caused by the expiration of tenure probation periods in academia. Figure 4

presents transition rates by sector, which support this hypothesis. However, main transitions

to non-S&E happen from the non-academic sectors. These transitions can be correlated with

postdoctoral appointments and inability to secure a permanent position. Mishagina (2007)

finds that individuals with higher number of postdoctoral appointments have a higher prob-

ability of leaving R&D for non-S&E tasks, which may suggest a “discouraged worker” effect.
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Figure 4: Transitions out of research by sector

Non-monotonic transition rates between tasks were found in the career dynamics of other

professionals, for example, junior medical specialists, Van den Berg et al. (2002), or young

lawyers, Sauer (1998). The shape of the transitions is traditionally associated in the literature

with the presence of incomplete information, Sauer (1998), Nagypál (2007). Notably, the

timing of the transitions coincides with the period believed to be crucial for young scientists

to establish a foundation to build reputation in R&D. Therefore incomplete information

about research ability seems to be a plausible explanation for the observed career dynamics.

The comparison of life sciences with other disciplines shows that these career patterns

are not specific to life sciences. Figures 5, 6 show similar patterns for physical sciences and

engineering. It is clear that although the magnitudes of retention in R&D slightly differs by

discipline, the overall pattern remains the same: Scientists start in R&D but later leave for

other tasks. The main transition happens to applied occupations which on average have the

lowest earnings compared to those in R&D and non-S&E.
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3.3 Estimation procedure

Denote the vector of parameters to be estimated:

θ = (α1, α2, b, c, µ, Σx, Σε, δ0, δ1, γ, φ),

where αm is a vector of the wage equation coefficients with a typical element {αm
ij} for

m = 1, 2 and i, j = {r, a, n}; b = (br, ba, bn) is a vector of task-specific non-pecuniary

benefits; c is a vector of task-switching costs, {cij}i 6=j i, j = {r, a, n}; µ and Σx are parameters

of the ability distribution; Σε is a correlation matrix of the distribution of shocks; δ0,1 are

parameters of the learning technology; γ = (γf0, γf1, γg0, γg1) is a vector of the parameters

of the human capital evolution technology in research; φ’s are task-specific sample attrition

probabilities9.

Due to the limited access to the SDR data files, it is impossible to estimate the model

by any method that requires direct utilization of the individual observations. This problem

is overcome by using the Method of Simulated Moments. For the given parameter values θ

the individual optimization problem is solved and choice probabilities are computed. Next,

I simulate individual 30,000 career paths. For each simulation, a type is randomly chosen

out of the matrix of pre-drawn ability vectors and an initial state vector is formed. A career

path is generated starting from the first period and moving forward to period T : a random

value is drawn and using the computed probability vector the optimal choice and wage are

recorded. The vector of state variables is updated according to the laws of motion of the

state variables described in (9). The simulation is repeated for 15 periods, and an individual

career history is recorded. I use these career histories to compute a set of 400 moments to

be matched with the corresponding moments in the data. The average difference between

the two sets of moments is weighted by the inverse of Λ, a diagonal matrix with a typical

element {λii} = σi, where σi is the standard deviation of the ith moment. This weighted

distance between the simulated and actual moments gives the criterion function, which is

minimized by the choice of the model parameters θ:

θ̂ = arg min
θ

(m̄(θ)− m̄)′Λ−1(m̄(θ)− m̄), (19)

9The discount factor β is not estimated and set to 0.95 a year.
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where m̄ is a vector of empirical moments obtained from N observations, with a typical jth

element m̄j = 1
N

ΣN
i=1mij, and m̄(θ) is a vector of the moments obtained from S simulated

careers at parameter values θ with a typical jth element m̄(θ)j = 1
SΣS

i=1mij(θ). The criterion

function is minimized using the Nelder-Mead optimization method.

Both the model solution and moment simulation were executed in parallel using 10 pro-

cessors. Since individuals and types are uncorrelated, both procedures were evaluated sepa-

rately for 10 subgroups of 70 types and 1,000 simulations each. Simulated moments obtained

for each subgroup were then collected and merged by the main server which used them to

calculate the value for the criterion function and update the vector of parameters. This way

the actual computing time was reduced by 10 and could be even further reduced by shrinking

the size of the subgroup each processor works with and increasing the number of processors

utilized.

3.4 Sources of identification

It is assumed that a scientist works for 30 years, which would correspond to retirement at

62 given the median age at graduation in S&E doctoral programs of 32, Thurgood et al.

(2006). The available data on the labor force status of doctorates suggest that participation

drops from 92 percent in 55-59 age group to 80 percent in 60-64 age group and further to

40 percent in the 65-75 age group, Kang (2003). More detailed information for the latter

age group is not available. The life span is divided into 15 periods of 2 years to reflect the

biennial nature of the data.

The set of moments is described in Table 7. The moments can be divided into three

groups: a) moments pertaining to career choices and earnings, b) moments related to life-

time participation in R&D, c) moments describing transitions between tasks. Each set of

moments contains data on choice or change in choices, corresponding mean salaries, and

salary standard deviations. Moments on the lifetime participation in research include indi-

viduals who ever tried R&D versus individuals who never tried R&D. Moments on earnings

and their standard deviations help identifying the parameters of the ability distribution and

the parameters of the wage equation. The parameters of the human capital evolution tech-

26



nology are identified jointly by the participation rates and salaries. The former also help

pinning down non-wage benefits. Moments on the lifetime participation in R&D and rele-

vant earnings and moments related to the transitions identify learning rates and transition

costs. The costs of leaving non-S&E are especially difficult to identify since the correspond-

ing transition rates are not available. This is why it is important to have information on

lifetime participation in research and transition-specific salaries.

4 Results

Estimation results summarized in Table 1. For identification, non-salary benefits in non-

S&E are normalized to zero, therefore the estimated values for benefits in other two tasks

reflect the benefits relative to the non-S&E. The estimated coefficients ba is essentially null

while br is approximately $4,770. Recall that the standard occupational choice model with

non-pecuniary benefits described earlier would suggest high benefits in R&D compared to

other tasks ($9,500 and $13,000 respectively).

The model predicts high switching costs from non-S&E sector to both R&D and applica-

tion: $17,260 and $17,002 respectively. These results support the common perception that

late entries or returns to S&E are difficult. The transitions between applied and R&D are

virtually free. Returns to R&D from the applied tasks are more expensive ($1,380) but not

as expensive as returns from non-S&E tasks ($1,940). These low estimates of the transition

costs within S&E produce higher transition rates within the sector then predicted by the

data. Estimated values for the technology of human capital evolution correspond to the

average probabilities of the human capital growth of 0.80 and depreciation of 0.43.
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Parameter research application non-S&E

Wage equation
α1

ri 0.2171 0.0010 0.0062
α2

ai 0.0978 0.1232 0.0068
α1

ni 0.0312 0.1149 0.1010
α2

ri -0.0147 -0.0001 -0.0001
α1

ai -0.0009 -0.0036 -0.0001
α2

ni -0.0001 -0.0005 -0.0100

Human capital evolution
γf0 -5.7852
γf1 0.7146
γg0 -5.6295
γg1 -0.0745

Learning probability
δ0 -8.3104
δ1 0.4758

Utility function
bi 110.50 925.70 0.00

cri - 7.67 9,970.17
cai 1,380.43 - 1,940.41
cni 17,260.35 17,002.13 -

Ability distribution
µi 10.3630 10.5093 9.2254
σ2

x 0.0643 0.1135 0.1499
ρra 0.6738
ρrn 0.5584
ρan 0.7825

Shocks distribution
σ2

εi
0.9764 0.0882 0.6350

Table 1: Estimated coefficients.
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Another result is positive correlation coefficients between the abilities, which suggest

hierarchical sorting rather than sorting based on comparative advantage. The strongest

correlation of 0.78 is found for R&D and non-S&E abilities. Correlation coefficient between

R&D and non-S&E, and application and non-S&E are 0.67 and 0.56 respectively. This finding

suggest that depending on the variance in the distribution of the skills in the population

and relative variance among the skills mobility from task to task is easier than under the

comparative advantage sorting scenario. The estimated variance of abilities is the largest

in non-S&E followed by R&D ability (0.51 versus 0.36) capturing the high variance of the

observed earnings in non-S&E due to the heterogeneous nature of tasks by the construction

of the category. Productivity in applied tasks is also the least subjected to shocks, whose

variance is estimated to be 0.08 compared to 0.64 in non-S&E and 0.98 in R&D. Mean

ability in non-S&E is the lowest (9.58). Therefore, individuals choosing non-S&E since right

after graduation have very large realized abilities in this task. Finally, the coefficient in

the learning technology function predicts the probability of learning after 1 period to be

approximately 0.3. More discussion on the effect of the various schedules of information

arrival follows after the discussion of the model fit.

4.1 Model Fit

This part of the section demonstrates how well the model fits the observed career dynamics

and earnings. Model predictions are plotted against the empirical moments on Figures 7,

8, and 9. The model fits major moments such as participation rates and earnings well. In

particular it captures distribution across the tasks at all ages as well as the distribution and

the growth rates of the earnings. It was challenging to fit the transition rates. The model

suggests high transition rates between the S&E tasks relative to the data and underpredicts

exits into the non-S&E.

Modelling career choices allows to pin down some variables of interest that are not avail-

able in the data such as research ability. Figures 10 and 11 demonstrate model predictions

regarding the choices and earning of individuals by the quartile of their actual research

ability.
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Figure 7: Employment rates, actual versus predicted
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Figure 8: Average salaries, actual versus predicted.

4.2 Effect of information about ability

To understand how incomplete information about research ability affects career choices, the

predictions of the baseline model are compared to the case of full information. If the R&D

ability is public knowledge, R&D earnings and individual decisions are based on the actual

rather than expected xR. Predicted participation rates under full information case are plotted

against the baseline model on Figure 12. The main result is that if individuals had known

their R&D ability ex ante, they would have chosen the optimal task early in the career and

stayed there until retirement. Incomplete information as predicted increases participation in
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Figure 9: Transition rates, actual versus predicted.

R&D at all ages. The difference may include individuals with relatively low research talent

who would have chosen research if they have not known their true ability ex ante. The

difference between the predicted rates is especially high early in the career: in the first year

after graduation there are 45 percent more researchers in R&D if ability is unknown. The

latter is also due to the high predicted costs of entering R&D later in the career and finite

time horizon. The gap between the participation rates gradually narrows down as low ability

researchers leave the task. This is consistent with the data where major exits happen early

in the career. Table 2 presents the results of the full information versus standard human
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Figure 10: Predicted choices by percentile of research ability.

capital accumulation scenarios. Overall under the full information scenario the fraction of

doctorates who ever tried R&D is lower by 14.73 percent. The average quality of researchers

who choose to do R&D when ability is unknown increases by 17.6 percent because lower

ability researchers prefer other employment options. Retention in R&D also increases by

17.4 percent. These new optimal career increase the discounted expected value of a doctoral

degree by 4.6 percent.

Standard human capital accumulation increases participation in R&D tasks by almost

6 percent and the average quality of stayers by 5.22 percent. At the same time, retention
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Figure 11: Predicted earnings by percentile of research ability.

in R&D drops by 65 percent. These findings suggest that if human capital accumulation

was independent of ability, more people would be attracted to R&D partially because of the

perspectives of faster salary growth in R&D and partially because of better perspectives in

other options due to the skill transferability. The latter explains lower retention rates in

the R&D because more scientists accumulate experience and it happens faster than under

the baseline scenario which improves their outside options and facilitates the move. This

increased outward mobility occurs at the cost of the relatively lower ability scientists and

results in an improvement of the average ability of the stayers.
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Figure 12: Participation in R&D: full information vs baseline model

Explanation Full information Standard human capital
1. Participation in R&D -14.73% 5.83%
2. Retention in R&D 17.41% -65.55%
3. Average quality in R&D 17.59% 5.22%
4. Change in the value 4.13% 1.56%

Table 2: Full information and standard human capital scenarios.
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Explanation Participation Retention
1. Full information -14.73% -8.52%
2. No skill transferability -7.13% 4.25%
3. No non-pecuniary benefits -5.21% -5.46%

Table 3: Accounting.

4.3 Alternative explanations and model predictions

As was mentioned earlier, there exist several alternative explanations of the observed career

dynamics, that is, high non-pecuniary benefits and skill transferability. The model allows

to evaluate how each of the stories contribute to the inter-task mobility and career choices.

Table 3 presents simple accounting for the role of each competing explanation. To obtain

each of them, first the coefficient at the non-pecuniary benefits were set to zero keeping

everything else constant. Then, skill transferability coefficients were restricted to be zero

and new predictions were obtained.

The results suggest that imperfect information about ability accounts for about 15 percent

of participation in and 8.5 percent of mobility out of R&D tasks. Skill transferability accounts

for another 7 percent and 4.25 percent respectively. Finally, non-pecuniary benefits increase

participation in R&D by 5.2 percent and increase mobility by 5.46 percent.

5 Counterfactual Experiments

The predictions of the model are used to evaluate the effect of several counterfactual ex-

periments on the supply of research skill and the value of doctoral degree. Two types of

experiments were conducted: First I compare different learning schemes to quantify the ef-

fect of incomplete information about ability on scientific careers. Secondly, I evaluate how

supply and the quality of the research skill reacts to changes in relative skill prices caused

by a) R&D subsidies and b) the improvement of the employment options outside S&E.

5.1 Learning Schemes

The speed of information arrival is expected to change the relative value of employment in

R&D tasks. To quantify this effect I evaluate three cases: a) slow learning δ = 0.05, b) sure
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learning δ = 1, and c) δ = 0.75. The probability of learning in the model is equivalent to

having a chance to engage in an individual project, which is possible if a scientist receives

a research grant or access to specific equipment or materials. Therefore, higher probability

of learning can be associated with improvement in the availability of grants or decreasing

competition for them. The results are compared to the cases of full information and the

baseline model. The latter predicts that information about research ability arrives gradually

over time: the baseline probability of learning δ is 0.30. The results of these experiments

are summarized in Table 4.

Probability of learning δ = 0.05 δ = 0.30 δ = 0.75 δ = 1
1. Participation in R&D: -4.65% 0 3.20% 3.88%
2. Quality of researchers: -10.64% 0 6.85% 9.55%
3. Change in value -0.58% 0 0.45% 0.60%

Table 4: Effect of different learning schemes on the supplied research skill.

The results suggest that incomplete information about ability intensifies with the rate

of the information arrival. As probability to learn increases, more scientists choose R&D

options: in the “sure learning” case lifetime participation in R&D grows by 2.26 percent

compared to the baseline case, while when the probability of learning is low (0.05) participa-

tion falls by 3.51 percent. As the probability of learning grows lower ability researchers are

“sorted out” earlier resulting in the higher average ability of those who stay (-23.51 percent

vs 10.20 percent in the extreme cases). The next result is that the “slow learning” case

decreases the expected discounted value by almost 6 percent, while when learning is faster

the value increases by 2.19 percent and 2.66 percent depending on the case.

The results of these experiments show that the effect of information about ability on the

retention and quality of research skill intensifies with the speed of information arrival.

5.2 Changes in relative prices

The next experiment evaluates how changes in relative skill prices affect the career dynamics

of doctorates. First, I evaluate the results of subsidies in R&D sector that would result in

an increase in the relative skill prices by 50 percent.
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Figure 13: Participation in R&D and changes in relative skill prices

Low salaries of postdoctorates have been emphasized many times as an important source

of the disadvantage of scientific careers relative to other options, Freeman et al. (2001). Other

studies suggest that raising salaries in R&D is ineffective because scientific labor supply is

inelastic due to long and costly training, Goolsbee (1998). However, as shown on Figure

13, the supply of the R&D skill is responsive to changes in skill prices: 50 percent raise

of R&D skill prices causes participation in R&D increase by nearly 11 percent throughout

a career, and almost doubles retention rates. Increased participation comes at the cost

of decreasing quality in R&D. The average quality of R&D labor drops by almost 16.5

percent, which happens because relatively lower ability researchers have higher value of

participation in research. Without modelling production of R&D, however, it is hard to

tell whether the overall production of new knowledge falls due to the decreased quality of

the participants or gains due to increased participation because of the cumulative nature of

knowledge production.

The next experiment evaluates how improvement in outside options affects total skill
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R&D up 50 percent non-S&E up 50 percent baseline
1. Participation in R&D 25.81% -5.27% 0
2. Retention in R&D 84.94% -9.69% 0
3. Average quality of researchers 0
- if ever worked in R&D 8.14% -0.80% 0
- if stayed in R&D 0.73% 0.31% 0
4. Change in value 42.44% 2.34% 0

Table 5: Effect of changing relative prices in R&D and non-S&E.

supplied to the R&D sector. In particular, I consider the 50 percent raise of skill prices in

non-S&E. In this case, participation in R&D falls by 17 percent, although retention does not

improve (see Figure 13 and Table 5). The average quality of labor in R&D in this scenario

increases by 3 percent.

6 Conclusion

This paper explains the puzzle in the observed career dynamics of S&E doctorates that is

hard to reconcile with the standard occupational choice model unless large non-salary benefits

in R&D are assumed. The puzzle consists of a) predominance of R&D employment early

in the career accompanied by the lowest relative earnings and b) decreasing participation in

R&D as careers develop in combination with high growth rates of the stayers. This paper

suggests that the dependence of productivity in R&D on ability to produce new research ideas

intensified through the dependence on past performance and the lack of a priori information

about ability account for a large fraction of the non-salary benefits in R&D. The paper

develops a dynamic model of occupational choices with symmetric learning about research

ability and the stochastic evolution of human capital to capture the proposed mechanisms

and evaluate the predicted behavior. The model is estimated on the rarely utilized Survey

of Doctorate Recipients for 1973-2001 using the Method of Simulated Moments.

The paper finds that incomplete information about ability to do research plays an im-

portant role in career choices. Incomplete information causes higher participation in R&D

and reduces the average quality of the supplied research skill. Information about ability

accounts for approximately 44 percent of the non-salary benefits in R&D. To better un-
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derstand the effect of incomplete information and its realization, several different learning

schemes were evaluated and compared to the full information case. The results of these

counterfactual experiments suggest that the effect of learning intensifies with the speed of

information arrival.

The predictions of the model were used to evaluate the effect of changes in the relative

skill prices in R&D and non-S&E. Both experiments suggest that supply of research skill

previously thought of as inelastic is sensitive to changes in relative prices and the value of

outside options.
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Appendix 1

6.1 Types of occupations and assignment principles

This section outlines the basic principles of assigning individuals and their employment into

one of three types of tasks using information on their primary and secondary tasks, occupa-

tion, and sector of employment. The survey questions regarding occupations and activities

changed substantially in 1993. These changes, however, did not substantially affect the

classification because the suggested responses were detailed enough to determine what type

of job the person held. One major difference in the questionnaire is that before 1993 the

list of possible activities distinguished between the “management of R&D”, “management of

education”, and “management in non-R&D”, which made assignment to different tasks easy.

The post-1993 questionnaire aggregated these three activities into one called “management

and administration”. For this period I used information on the secondary activity to deter-

mine the relevance of each case to R&D. A comparison between occupational assignments

for pre- and post-1993 data shows no discrepancies or inconsistencies.

I consider three types of tasks: R&D-related, applied, and non-S&E. A responder is con-

sidered to be in the R&D task in a given period of time if the following conditions hold: a)

the reported primary activity was either research, development, design, or management of

R&D; b) indicated their occupation as scientists (e.g. physicist), engineers (e.g. mechanical

engineer), “postsecondary teacher”, or “manager”; c) the reported employer was academic,

government, or industry that can be considered as S&E-related. Using information on oc-

cupation and sector allows to exclude individuals who performed research tasks in non-S&E

sectors.

The second type includes jobs that require mostly application of accumulated scientific

or technical knowledge rather than development of new knowledge. Respondents were con-

sidered employed in this type of tasks reported: a) activities such as teaching in S&E fields

in both secondary and post-secondary institutions, professional services in S&E (e.g. tech-

nical consulting and assessment, counselling, surveying, etc.), software development, and

managerial activities in these areas, b) the employer’s industry was S&E-related.
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The last category, non-S&E tasks, included tasks unrelated to S&E. In order to distin-

guish the relevance of a job to S&E, I used a taxonomy different from that adopted by the

NSF. For example, the NSF taxonomy considers all managerial occupations as unrelated to

S&E. This way, the head of a university department or a director of a research laboratory

would be considered as someone who changed his career. For the purposes of my analysis,

such a classification would give misleading results because mobility from S&E to non-S&E

would include both career advancements (exits due to promotions) and career changes. Dis-

tinguishing between the two is possible only when managerial occupations are separated by

their relevance to S&E. One example of non-S&E tasks would be teaching non-S&E subjects

(e.g. in humanities, business10, law, or arts). Another example would be employment in the

areas of legislation, business services, such as finance, accounting, non-technical consulting,

or marketing and sales of products and services in non-S&E industries (e.g. tourism and

hospitality, entertainment, and media). Some might argue that business consulting or leg-

islation in high-tech industries or manufacturing requires technical knowledge. I agree with

this argument but believe that technical education for these professions does not require to

be at the level of a research doctorate.

This classification of occupations can seem too general as it does not differ by discipline.

However, for the purposes of this study it captures the major features of jobs that are simi-

lar across different disciplines. For example, it is true that mathematicians and biochemists

investigate very different problems using different methods, and their products have differ-

ent life-cycle and commercial value. However, both types of scientists use analytical and

modelling skills, need to demonstrate high ability to generate original ideas to create scien-

tific breakthroughs, and aim at being independent researchers. Second argument is that the

current classification allows for interdisciplinary projects that are very common in industrial

research and development, when the difference across disciplines is less defined and scientists

from different fields are considered as substitutes. The same argument applies for grouping

research occupations from different sectors. It is true that academic and industrial research

differ considerably in requirements, earnings, and work environments, however when it comes

10For certain social science majors, especially for economists, business would not be an unrelated area.
However, social science doctorates were excluded from the estimation sample.
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to research it is expected to impose similar requirements to research ability, implicitly via

project funding queue or explicitly via tenure contracts.
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Appendix 2

R&D jobs applied jobs non-S&E Overall

Men 0.671 0.513 0.512 0.645
White 0.801 0.851 0.812 0.819
Citizen, native 0.811 0.841 0.820 0.813
Married 0.471 0.452 0.670 0.470
Graduate of Research I and II 0.867 0.849 0.854 0.860
Top-school graduate 0.158 0.134 0.155 0.149
Fraction with non-S&E degrees 0.049 0.089 0.128 0.069
Academic sector 0.404 0.658 0.178 0.478
Industry/business sector 0.472 0.278 0.712 0.420
Postdoctorate 0.116 0.020 0.006 0.104
Tenure-track if acad. 0.155 0.187 0.106 0.169
Tenured if acad. 0.361 0.536 0.534 0.451

Table 6: Descriptive statistics by task
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Description of the moment Number of moments in the group
Participation rates T periods× 3 tasks

Log(salaries) T periods× 3 tasks

St.dev. of log(salaries) T periods× 3 tasks

Fraction never employed in research 1

Log(salaries) if ever/never worked in researcha T periods× 2 cases

St.dev. of log(salaries) if ever/never worked in research T periods× 2 cases

Lifetime participation in research T periods× 2 cases

Log(salaries) by participation in researchb T periods× 2 cases

St.dev. of log(salaries) by participation in research T periods× 2 cases

Transition ratesc 10× 4 types of transitions

Log(salaries) conditional on transition 10× 4 types of transitions

Log(salaries) of “stayers” in R&D 10

Table 7: Set of empirical moments.

aEver- versus never employed in R&D
bExperience in research by certain age: yes or no
cIn the data the transitions are recorded for every 2nd year of employment. This way 10 records correspond

to 20 years on the task
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