Linear Algebra: Practice Problems

September 7, 2011

ETM 2.2 A vector in \mathbb{R}^n can be *normalized* by multiplying it by the reciprocal of its norm. Show that, for any $x \in \mathbb{R}^n$ with $x \neq 0$, the norm of x/||x|| = 1.

ETM 2.6 Prove that, if the k columns of X are linearly independent, each vector z in $span(\mathbf{X})$ can be expressed as Xb for one and only one k-vector b. Hint : Suppose that there are two different vectors, $\mathbf{b_1}$ and $\mathbf{b_2}$, such that $\mathbf{z} = \mathbf{X}\mathbf{b_i}$, i = 1, 2, and show that this implies that the columns of X are linearly dependent.

ETM 2.7 Consider the vectors $\mathbf{x_1} = [1, 2, 4]'$, $\mathbf{x_2} = [2, 3, 5]'$ and $\mathbf{x_3} = [3, 6, 12]'$. What is the dimension of the subspace that these vectors span?

ETM 2.14 Let **X** be an $n \times k$ matrix of full rank. Consider the $n \times k$ matrix **XA**, where **A** is a singular $k \times k$ matrix. Show that the columns of **XA** are linearly dependent, and that $span(\mathbf{XA}) \subset span(\mathbf{X})$.

- ETM 2.9 The matrix $\mathbf{P}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ is a projection *projection* matrix. It projects a vector y onto the space spanned by the columns of \mathbf{X} . Similarly, $\mathbf{M}_{\mathbf{X}} = \mathbf{I} \mathbf{P}_{\mathbf{X}}$ is a projection matrix that project y onto the space orthogonal to column space of \mathbf{X} , that is onto the residuals. Prove the following properties algebraically and provide a geometric intuition:
 - (a) $\mathbf{P}_{\mathbf{X}}\mathbf{P}_{\mathbf{X}} = \mathbf{P}_{\mathbf{X}}$ and $\mathbf{M}_{\mathbf{X}}\mathbf{M}_{\mathbf{X}} = \mathbf{M}_{\mathbf{X}}$
 - (b) $\mathbf{P}_{\mathbf{X}} + \mathbf{M}_{\mathbf{X}} = \mathbf{I}$ (this is why $\mathbf{P}_{\mathbf{X}}$ and $\mathbf{M}_{\mathbf{X}}$ are sometimes are called complimentary projections)
 - (c) $\mathbf{P}_{\mathbf{X}}\mathbf{M}_{\mathbf{X}} = \mathbf{0}$