Linear Algebra: Practice Problems

September 7, 2011

ETM 2.2 A vector in \mathbf{R}^{n} can be normalized by multiplying it by the reciprocal of its norm. Show that, for any $x \in \mathbf{R}^{n}$ with $x \neq 0$, the norm of $x /\|x\|=1$.

ETM 2.6 Prove that, if the k columns of \mathbf{X} are linearly independent, each vector z in $\operatorname{span}(\mathbf{X})$ can be expressed as $\mathbf{X b}$ for one and only one k-vector \mathbf{b}. Hint : Suppose that there are two different vectors, $\mathbf{b}_{\mathbf{1}}$ and $\mathbf{b}_{\mathbf{2}}$, such that $\mathbf{z}=\mathbf{X} \mathbf{b}_{\mathbf{i}}, i=1,2$, and show that this implies that the columns of \mathbf{X} are linearly dependent.

ETM 2.7 Consider the vectors $\mathbf{x}_{\mathbf{1}}=[1,2,4]^{\prime}, \mathbf{x}_{\mathbf{2}}=[2,3,5]^{\prime}$ and $\mathbf{x}_{\mathbf{3}}=[3,6,12]^{\prime}$. What is the dimension of the subspace that these vectors span?

ETM 2.14 Let \mathbf{X} be an $n \times k$ matrix of full rank. Consider the $n \times k$ matrix $\mathbf{X A}$, where \mathbf{A} is a singular $k \times k$ matrix. Show that the columns of XA are linearly dependent, and that $\operatorname{span}(\mathbf{X A}) \subset \operatorname{span}(\mathbf{X})$.

ETM 2.9 The matrix $\mathbf{P}_{\mathbf{X}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime}$ is a projection projection matrix. It projects a vector y onto the space spanned by the columns of \mathbf{X}. Similarly, $\mathbf{M}_{\mathbf{X}}=\mathbf{I}-\mathbf{P}_{\mathbf{X}}$ is a projection matrix that project y onto the space orthogonal to column space of \mathbf{X}, that is onto the residuals. Prove the following properties algebraically and provide a geometric intuition:
(a) $\mathbf{P}_{\mathbf{X}} \mathbf{P}_{\mathbf{X}}=\mathbf{P}_{\mathbf{X}}$ and $\mathbf{M}_{\mathbf{X}} \mathbf{M}_{\mathbf{X}}=\mathbf{M}_{\mathbf{X}}$
(b) $\mathbf{P}_{\mathbf{X}}+\mathbf{M}_{\mathbf{X}}=\mathbf{I}$ (this is why $\mathbf{P}_{\mathbf{X}}$ and $\mathbf{M}_{\mathbf{X}}$ are sometimes are called complimentary projections)
(c) $\mathbf{P}_{\mathbf{X}} \mathbf{M}_{\mathbf{X}}=\mathbf{0}$

