Optimization II: Solutions for 2. and 5 .

September 8, 2011
2. Minimize the following expenditure function where u is some fixed utility level

$$
\min _{x_{1}, x_{2}} p_{1} x_{1}+p_{2} x_{2} \text { such that } u-\left[x_{1}^{\rho}+x_{2}^{\rho}\right]^{\frac{1}{\rho}}
$$

Solution: We have the following Lagrangian:

$$
\mathfrak{L}\left(x_{1}, x_{2}, \lambda\right)=p_{1} x_{1}+p_{2} x_{2}-\lambda\left(\left[x_{1}^{\rho}+x_{2}^{\rho}\right]^{\frac{1}{\rho}}-u\right)
$$

The first-order conditions are:

$$
\begin{aligned}
\frac{\partial \mathfrak{L}}{\partial x_{1}} & =p_{1}-\lambda(1 / p)\left[x_{1}^{\rho}+x_{2}^{\rho}\right]^{\frac{1}{\rho}}\left(p x_{1}^{\rho-1}\right)=0 \\
\frac{\partial \mathfrak{L}}{\partial x_{2}} & =p_{2}-\lambda(1 / p)\left[x_{1}^{\rho}+x_{2}^{\rho}\right]^{\frac{1}{\rho}}\left(p x_{2}^{\rho-1}\right)=0 \\
\frac{\partial \mathfrak{L}}{\partial \lambda} & =\left[x_{1}^{\rho}+x_{2}^{\rho}\right]^{\frac{1}{\rho}}-u=0
\end{aligned}
$$

Re-arranging the first two equations we have:

$$
\begin{aligned}
& p_{1}=\lambda\left[x_{1}^{\rho}+x_{2}^{\rho}\right]^{\frac{1}{\rho}-1} x_{1}^{\rho-1} \\
& p_{2}=\lambda\left[x_{1}^{\rho}+x_{2}^{\rho}\right]^{\frac{1}{\rho}-1} x_{2}^{\rho-1}
\end{aligned}
$$

These imply that:

$$
\frac{p_{1}}{p_{2}}=\frac{x_{1}^{\rho-1}}{x_{2}^{\rho-1}}
$$

Re-arranging, we have

$$
x_{1}=\left[x_{2}^{\rho-1} \frac{p_{1}}{p_{2}}\right]^{\frac{1}{\rho-1}}=x_{2}\left(\frac{p_{1}}{p_{2}}\right)^{\frac{1}{\rho-1}}
$$

Using this in the constraint we have:

$$
\begin{aligned}
& {\left[x_{2}^{\rho}\left(\frac{p_{1}}{p_{2}}\right)^{\frac{\rho}{\rho-1}}+x_{2}^{\rho}\right]^{\frac{1}{\rho}}=u } \\
\Longrightarrow & x_{2}^{\rho}\left(1+\left(\frac{p_{1}}{p_{2}}\right)^{\frac{\rho}{\rho-1}}\right)^{\frac{1}{\rho}}=u \\
\Longrightarrow & x_{2}^{*}=\frac{u p_{2}^{\frac{1}{\rho-1}}}{\left[p_{1}^{\frac{\rho}{\rho-1}}+p_{2}^{\frac{\rho}{\rho-1}}\right]^{1 / \rho}}
\end{aligned}
$$

and so $x_{1}^{*}=\frac{u p_{2}^{\frac{1}{\rho-1}}\left[\frac{p_{1}}{p_{2}}\right]^{\frac{1}{\rho-1}}}{\left[p_{1}^{\frac{\rho}{\rho-1}}+p_{2}^{\frac{\rho}{\rho-1}}\right]^{1 / \rho}}$.
One can verify that the Hessian of the Lagrangian \mathfrak{L} is positive definitive and that $\left(x_{1}^{*}, x_{2}^{*}\right)$ is a minimum.
5. The production function for a firm depends on capital, K, and the number of workers, L. It is given by:

$$
f(K, L)=\sqrt{\sqrt{K}+\sqrt{L}}
$$

The price per unit of the product is p, the cost of capital is r, and the wage rate is w, so that profit is:

$$
\pi(K, L)=p \sqrt{\sqrt{K}+\sqrt{L}}-r K-w L, \quad(K \geq 0, L \geq 0)
$$

(a) Suppose that $\pi(K, L)$ has a maximum in its domain, and find the maximum point. What is the maximum when $p=32 \sqrt{2}$ and $w=r=1$?
(b) Suppose now that the firm becomes worker-controlled, and seeks to maximize value added per worker, that is $[\pi(K, L)+w L] / L$. If we let $k=K / L$, explain why the value added per worker is

$$
h(L, k)=p[\sqrt{1+\sqrt{k}}] L^{-3 / 4}-r k
$$

(c) Let $p=32 \sqrt{2}, r=1$, and suppose that the corresponding function $h(L, k)$ has a maximum in the domain A consisting of all (L, k) with $L \geq 16$ and $k>0$. Call the maximum point (\bar{L}, \bar{k}). Find \bar{L} and show that $\bar{k}=1$. Find the maximum value of h.

Solution: (a) We have $\Pi(K, L)=p \sqrt{\sqrt{K}+\sqrt{L}}-r K-w L$. The necessary first-order conditions for a maximum are:

$$
\begin{aligned}
& \frac{\partial \Pi}{\partial K}=p\left(\frac{1}{2}\right)(\sqrt{K}+\sqrt{L})^{-1 / 2} \cdot \frac{1}{2} K^{-1 / 2}-r=0 \\
& \frac{\partial \Pi}{\partial K}=p\left(\frac{1}{2}\right)(\sqrt{K}+\sqrt{L})^{-1 / 2} \cdot \frac{1}{2} L^{-1 / 2}-w=0
\end{aligned}
$$

From these we have:

$$
\begin{align*}
& \frac{p / 4}{\sqrt{\sqrt{K}+\sqrt{L}}} \cdot \frac{1}{\sqrt{K}}=r \tag{1}\\
& \frac{p / 4}{\sqrt{\sqrt{K}+\sqrt{L}}} \cdot \frac{1}{\sqrt{L}}=w \tag{2}
\end{align*}
$$

Then, re-arranging we have:

$$
L=K \frac{r^{2}}{w^{2}}
$$

Now, using this result in either (1) or (2) we have after some simplification:

$$
\begin{aligned}
K & =\left[\frac{p^{2}}{16(1+r / w) r^{2}}\right]^{2 / 3} \\
L & =\left[\frac{p^{2}}{16(1+r / w) r^{2}}\right]^{2 / 3} \frac{r^{2}}{w^{2}}
\end{aligned}
$$

Then, when $p=32 \sqrt{2}, w=r=1$,

$$
\begin{aligned}
K & =\left[\frac{64 / 2}{16(2)}\right]^{2 / 3}=1^{2 / 3}=1 \\
L & =k \cdot \frac{r^{2}}{w^{2}}=1
\end{aligned}
$$

(b) The value added per worker is simply:

$$
\begin{aligned}
h(L, k)=\frac{\Pi(K, L)+w L}{L} & =\frac{p \sqrt{\sqrt{K}+\sqrt{L}}-r K-w L+w L}{L} \\
& =\frac{p \sqrt{\sqrt{K}+\sqrt{L}}-r K}{L} \\
& =p \frac{\sqrt{\sqrt{K}+\sqrt{L}}}{L}-r k \\
& =p \frac{\sqrt{\sqrt{L}(\sqrt{K / L}+1)}}{L}-r k \\
& =p \frac{\sqrt{\sqrt{L}} \sqrt{\sqrt{k}+1}}{L}-r k \\
& =p L^{-3 / 4} \sqrt{\sqrt{k}+1}-r k
\end{aligned}
$$

as desired.
(c) The optimal value of L can't found using Calculus because Calculus only provides interior solutions and the solution is a corner. To see this, notice first that $h(L, k)$ is strictly decreasing in L so the choice of L that will maximize $h(L, k)$ will be the smallest possible L. Given that we have imposed $L \geq 16$, it must be that $\bar{L}=16$. Now, to find the optimal k we simply substitute the optimal L into the objective and use Calculus to solve for \bar{k}. Using $p=32 \sqrt{2}, r=1$:

$$
\max _{k} p L^{-3 / 4} \sqrt{\sqrt{k}+1}-r k=4 \sqrt{2} \sqrt{\sqrt{k}+1}-k
$$

Now, the first-order condition is:

$$
\begin{aligned}
4 \sqrt{2}(1 / 2)(\sqrt{k}+1)^{-1 / 2} \cdot(1 / 2) k^{-1 / 2}-1 & =0 \\
\Longrightarrow \frac{\sqrt{2}}{\sqrt{k} \sqrt{\sqrt{k}+1}} & =1
\end{aligned}
$$

which yields a cubic equation in k that only has a root in the domain $k>0$ at $k=1$ so that $\bar{k}=1$.

