Calculus/Optimization and Convexity I: Practice Problems

September 7, 2011

1. Consider the function

$$
f(x)=\frac{3}{x^{4}-x^{2}+1}
$$

(a) Compare $f^{\prime}(x)$ and find all local maximum and minimum points for f. Has f any global extreme points?
(b) Draw the graph of f
2. A function f is given by:

$$
f(x)=(1+2 / x) \sqrt{x+6}
$$

(a) Find the domain of f , the zeros of f, and the intervals where $f(x)$ is positive.
(b) Find possible local extreme points and values.
3. (a) If $a_{1}<\cdots<a_{n}$, find the minimum value of $f(x)=\sum_{i=1}^{n}\left(x-a_{i}\right)^{2}$
(b) Find the minimum value of $f(x)=\sum_{i=1}^{n}\left|x-a_{i}\right|$. Calculus will not help in this problem.
(c) Let $a>0$. Show that the maximum value of

$$
f(x)=\frac{1}{1+|x|}+\frac{1}{1+|x-a|}
$$

is $\frac{2+a}{1+a}$. (The derivative can be found on each of the intervals $(-\infty, 0),(0, a)$ and (a, ∞) separately.)
4. Let the total cost of producing Q units of a commodity be

$$
C(Q)=a Q^{2}+b Q+c, Q>0
$$

where a, b, and c are positive constants. Prove that the average cost function $A(Q)=C(Q) / Q$ has a minimum at $Q^{*}=\sqrt{c / a}$.
5. A competitive firm receives a price p for each unit of its output, pays a price w for each unit of its only variable input, and incurs fixed costs of F. Its output from using x units of variable input is $f(x)=\sqrt{x}$.
(a) Write the firm's revenue, cost and profit functions.
(b) Write the first-order conditions for profit maximization, and give it an economic interpretation.
(c) Check that profit really is maximized at a point satisfying the first-order condition.
(d) Explain how your answers would change if $f(x)=x^{2}$.
6. Suppose that a function f is concave.
(a) What restrictions on a and b will guarantee that $g(x)=a f(x)+b$ is also concave?
(b) Prove that if f and g are both concave, then

$$
h(x)=\min \{f(x), g(x)\}
$$

is concave. Illustrate.

