Queen's University Faculty of Arts and Sciences
Department of Economics
Graduate Methods Review Course 2009
Exit Exam
Instructions: 2 Hours

You are to answer ALL questions. SHOW ALL YOUR WORK. There are a total of 100 possible marks to be obtained and marks are indicated for each question.

1. ($\mathbf{1 0}$ Marks) Sketch a few level sets for the following functions. Are the level sets convex?
(a) $y=x_{1} x_{2}$
(b) $y=x_{1}+x_{2}$
(c) $y=\min \left[x_{1}, x_{2}\right]$

Solution: The levels sets are certainly all convex functions as is clear from the graphs.

Figure 1: a.

Figure 2: b.

Figure 3: c.
2. (10 Marks) Let $f: D \rightarrow R$ be any mapping and let B be any set in the range R. Prove that

$$
f^{-1}\left(B^{c}\right)=\left(f^{-1}(B)\right)^{c}
$$

(If you can't prove it analytically, at least draw a convincing picture.)

Solution:

We need to show
(a) $f^{-1}\left(B^{c}\right) \subset\left(f^{-1}(B)\right)^{c}$
(b) $\left(f^{-1}(B)\right)^{c} \subset f^{-1}\left(B^{c}\right)$

To see (a), note that if $x \in f^{-1}\left(B^{c}\right)$ then there exists a $y \in B^{c}$ such that $f(x)=y$. Moreover, as $y \notin B, f^{-1}(y) \notin f^{-1}(B) \Longrightarrow f^{-1}(y) \in\left(f^{-1}(B)\right)^{c}$.
Similarly, to see (b), note that if $x \in\left(f^{-1}(B)\right)^{c}$ then $x \notin\left(f^{-1}(B)\right)$. That is, there is no $y \in B$ such that $f(x)=y$. Hence, there must be a $y \in B^{c}$ s.t. $f(x)=y \Longrightarrow x \in f^{-1}\left(B^{c}\right)$.
3. ($\mathbf{1 0}$ Marks) Let $f\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}\right)^{2}$. Is $f\left(x_{1}, x_{2}\right)$ concave on \mathbb{R}_{+}^{2} ?

Solution: As $f\left(x_{1}, x_{2}\right)$ is clearly twice-differentiable on \mathbb{R}_{+}^{2}, it is convex iff $H\left(x_{1}, x_{2}\right)$ is positive semi-definite for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{+}$.
Notice that:

$$
\begin{aligned}
\frac{\partial f}{\partial x_{1}} & =2 x_{1}\left(x_{2}\right)^{2} \\
\frac{\partial f}{\partial x_{2}} & =2\left(x_{1}\right)^{2} x_{2} \\
\frac{\partial^{2} f}{\partial x_{1}^{2}} & =2\left(x_{2}\right)^{2} \\
\frac{\partial^{2} f}{\partial x_{2}^{2}} & =2\left(x_{1}\right)^{2} \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & =4 x_{1} x_{2}
\end{aligned}
$$

The Hessian is:

$$
\left[\begin{array}{cc}
2\left(x_{2}\right)^{2} & 4 x_{1} x_{2} \\
4 x_{1} x_{2} & 2\left(x_{1}\right)^{2}
\end{array}\right]
$$

The principal minors are:

- $D_{1}=\left|2\left(x_{2}\right)^{2}\right|=2\left(x_{2}\right)^{2}>0$ for all $x_{2} \in R_{+}^{2}$
- $D_{2}=\left|\begin{array}{ll}2\left(x_{2}\right)^{2} & 4 x_{1} x_{2} \\ 4 x_{1} x_{2} & 2\left(x_{1}\right)^{2}\end{array}\right|=-12\left(x_{1} x_{2}\right)^{2}<0$ for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}$

Since, the principal minors alternate starting with a positive, the Hessian is NEITHER positive or negative definite, implying that $f\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}\right)^{2}$ is neither concave or convex \mathbb{R}_{+}^{2}.

Figure 4: $f\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}\right)^{2}$
4. (10 Marks) Consider a producer who rents machines K at r per year and hires labour L at wage w per year to produce output Q, where

$$
Q=\sqrt{K}+\sqrt{L}
$$

Suppose he wishes to produce a fixed quantity Q at minimum cost. Find his factor demand functions. That is, find the optimal levels of capital and labour in the following problem:

$$
\min _{K, L} r K+w L \text { s.t. } Q=\sqrt{K}+\sqrt{L}
$$

Also, show that the Lagrange multiplier is given by

$$
\lambda=2 w r Q /(w+r)
$$

Solution:

The Lagrangian for the above problem is:

$$
\mathfrak{L}(K, L, \lambda)=r K+w L+\lambda[Q-\sqrt{K}-\sqrt{L}]
$$

The corresponding first-order conditions are:

$$
\begin{align*}
\frac{\partial \mathfrak{L}}{\partial K} & =r-\frac{1}{2} \lambda K^{-1 / 2}=0 \tag{1}\\
\frac{\partial \mathfrak{L}}{\partial L} & =w-\frac{1}{2} \lambda L^{-1 / 2}=0 \tag{2}\\
\frac{\partial \mathfrak{L}}{\partial \lambda} & =Q-\sqrt{K}-\sqrt{L}=0 \tag{3}
\end{align*}
$$

Equating (1) and (2) we have:

$$
\begin{equation*}
\frac{r}{w}=\frac{k^{-1 / 2}}{L^{-1 / 2}} \tag{4}
\end{equation*}
$$

Together with the constraint, we can solve for the optimal values of K, L :

$$
\begin{align*}
\sqrt{K} & =\frac{Q}{1+r / w} \Longrightarrow K^{*}=\frac{Q^{2}}{(1+r / w)^{2}} \tag{5}\\
\sqrt{L} & =\frac{Q \cdot r / w}{1+r / w} \Longrightarrow L^{*}=\frac{Q^{2}(r / w)^{2}}{(1+r / w)^{2}} \tag{6}
\end{align*}
$$

Using either of these expressions in (1) or (2) we can recover the multiplier:

$$
\begin{equation*}
\lambda=\frac{2 r Q}{1+r / w}=\frac{2 r w Q}{w+r} \tag{7}
\end{equation*}
$$

5. ($\mathbf{1 0}$ Marks) There is a fixed total Y of goods at the disposal of society. There are two consumers who envy each other. If consumer 1 gets Y_{1} and consumer 2 gets Y_{2}, their utilities are

$$
\begin{aligned}
U_{1} & =Y_{1}-k Y_{2}^{2} \\
U_{2} & =Y_{2}-k Y_{1}^{2}
\end{aligned}
$$

where k is a positive constant. The allocation must satisfy $Y_{1}+Y_{2} \leq Y$, and maximize $U_{1}+U_{2}$. Show that if $Y>1 / k$, the resource constraint will be slack at the optimum. Interpret the result.
Solution: We are to solve the following problem:

$$
\begin{equation*}
\max _{Y_{1}, Y_{2}}\left(Y_{1}-k Y_{2}^{2}\right)+\left(Y_{2}-k Y_{1}^{2}\right) \text { s.t. } Y_{1}+Y_{2} \leq Y \tag{8}
\end{equation*}
$$

Let $z \geq 0$ be such that

$$
Y-\left(Y_{1}+Y_{2}\right)-z=0
$$

Then solving (8) is the equivalent to solving the following problem:

$$
\max _{Y_{1}, Y_{2}, \lambda, z} \mathfrak{L}\left(Y_{1}, Y_{2}, \lambda, z\right)=\left(Y_{1}-k Y_{2}^{2}\right)+\left(Y_{2}-k Y_{1}^{2}\right)+\lambda\left(Y-\left(Y_{1}+Y_{2}\right)-z\right) \text { s.t. } z \geq 0
$$

The necessary conditions for a solution are:

$$
\begin{align*}
\frac{\partial \mathfrak{L}}{\partial Y_{1}} & =1-2 k Y_{1}-\lambda=0 \tag{9}\\
\frac{\partial \mathfrak{L}}{\partial Y_{2}} & =1-2 k Y_{2}-\lambda=0 \tag{10}\\
\frac{\partial \mathfrak{L}}{\partial \lambda} & =Y-\left(Y_{1}+Y_{2}\right)-z=0 \tag{11}\\
\frac{\partial \mathfrak{L}}{\partial z} & =-\lambda \leq 0 \tag{12}\\
\frac{\partial \mathfrak{L}}{\partial Y_{1}} z & =-\lambda z=0 \tag{13}\\
z & \geq 0 \tag{14}
\end{align*}
$$

Starting with (13), notice that there are two cases to consider:
(a) $\lambda>0, z=0$: constraint binds as $z=0$.

Notice that these values of λ and z satisfy (12) and (14). From (9) and (10), we obtain $1-2 k Y_{1}=1-2 k Y_{2} \Longrightarrow Y_{1}=Y_{2}$. Using this result in (11) together with $z=0$, we have $Y_{1}=Y_{2}=Y / 2$ at the optimum. Moreover, $\lambda=1-2 k *(1 / 2) Y=1-Y / k>0$ as long as $Y>1 / k$.
(b) $\lambda=0, z>0$: constraint is slack as $z>0$

Again, notice that these values are consistent with (12) and (14). Then, from (9) and (10) we obtain $Y_{1}=Y_{2}=1 / 2 k$. Using this result in (11) we obtain that $z=Y-1 / k$. Now, to ensure that (14) is satisfied with this value for z, we need $Y>1 / k$. Hence, the resource constraint is slack whenever this is true as it implies a strictly positive z.
(Note: technically, there is a third case to be considered: $\lambda=z=0$ but it doesn't affect the above discussion since in this case the constraint is also binding.)
6. (10 Marks) If \mathbf{a}, \mathbf{b}, and \mathbf{c} are linearly independent vectors in \mathbb{R}^{m}, prove that $\mathbf{a}+\mathbf{b}, \mathbf{b}+\mathbf{c}$ and $\mathbf{a}+\mathbf{c}$ are also linearly independent. Is the same true for $\mathbf{a}-\mathbf{b}, \mathbf{b}+\mathbf{c}$ and $\mathbf{a}+\mathbf{c}$?

Solution: We need to show that $\mathbf{a}+\mathbf{b}, \mathbf{b}+\mathbf{c}$ and $\mathbf{a}+\mathbf{c}$ are also linearly independent. In other words, we need to show that the only solution to:

$$
\alpha_{1}(\mathbf{a}+\mathbf{b})+\alpha_{2}(\mathbf{b}+\mathbf{c})+\alpha_{3}(\mathbf{a}+\mathbf{c})=0
$$

is $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$. To see this note that

$$
\begin{aligned}
& \alpha_{1}(\mathbf{a}+\mathbf{b})+\alpha_{2}(\mathbf{b}+\mathbf{c})+\alpha_{3}(\mathbf{a}+\mathbf{c})=\left(\alpha_{1}+\alpha_{3}\right) \mathbf{a}+\left(\alpha_{1}+\alpha_{2}\right) \mathbf{b}+\left(\alpha_{2}+\alpha_{3}\right) \mathbf{c} \\
& \quad \Longrightarrow \alpha_{1}+\alpha_{3}=\alpha_{1}+\alpha_{2}=\alpha_{2}+\alpha_{3}=0
\end{aligned}
$$

as $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are linearly independent. Solving this system, we have $\alpha_{2}=\alpha_{3}=\alpha_{1} \Longrightarrow \alpha_{1}=$ $\alpha_{2}=\alpha_{3}=0$. Hence, $\mathbf{a}+\mathbf{b}, \mathbf{b}+\mathbf{c}$ and $\mathbf{a}+\mathbf{c}$ are also linearly independent.
Applying the same technique to $\mathbf{a}-\mathbf{b}, \mathbf{b}+\mathbf{c}, \mathbf{a}+\mathbf{c}$ we find that $\alpha_{1}+\alpha_{3}=-\alpha_{1}+\alpha_{2}=\alpha_{2}+\alpha_{3}=0$. Solving this system, we find that $\alpha_{1}=\alpha_{2}=-\alpha_{3}$ Here, there are there are lots of solutions. For example, $\alpha_{1}=\alpha_{2}=1$ and $\alpha_{3}=-1$ ensures that

$$
\alpha_{1}(\mathbf{a}-\mathbf{b})+\alpha_{2}(\mathbf{b}+\mathbf{c})+\alpha_{3}(\mathbf{a}+\mathbf{c})=0
$$

Hence, $\mathbf{a}-\mathbf{b}, \mathbf{b}+\mathbf{c}, \mathbf{a}+\mathbf{c}$ are linearly dependent.
7. (10 Marks) Suppose that $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3}$ are all different from $\mathbf{0}$, and that $\mathbf{a} \perp \mathbf{b}, \mathbf{b} \perp \mathbf{c}, \mathbf{a} \perp \mathbf{c}$. Prove that \mathbf{a}, \mathbf{b}, and \mathbf{c} are linearly independent.
Solution: We need to show that the only solution to

$$
\begin{equation*}
\alpha_{1} \mathbf{a}+\alpha_{2} \mathbf{b}+\alpha_{3} \mathbf{c}=0 \tag{15}
\end{equation*}
$$

is $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$. Notice that when doting the LHS with a we have

$$
\begin{aligned}
\left(\alpha_{1} \mathbf{a}+\alpha_{2} \mathbf{b}+\alpha_{3} \mathbf{c}\right) \cdot \mathbf{a} & =\alpha_{1} \mathbf{a} \cdot \mathbf{a}+\alpha_{2} \mathbf{b} \cdot \mathbf{a}+\alpha_{3} \mathbf{c} \cdot \mathbf{a} \\
& =\alpha_{1} \mathbf{a} \cdot \mathbf{a}
\end{aligned}
$$

as $\mathbf{b} \cdot \mathbf{a}=\mathbf{c} \cdot \mathbf{a}=0$ as a result of orthogonality. Doting the RHS of (15) with a we have $\mathbf{0} \cdot \mathbf{a}=\mathbf{0}$. Hence,

$$
\left(\alpha_{1} \mathbf{a}+\alpha_{2} \mathbf{b}+\alpha_{3} \mathbf{c}\right) \cdot \mathbf{a}=\alpha_{1} \mathbf{a} \cdot \mathbf{a}=\mathbf{0}
$$

Furthermore, $\mathbf{a} \cdot \mathbf{a} \neq 0$ as $\mathbf{a} \cdot \mathbf{a}$ is the norm of \mathbf{a} as the latter is different from $\mathbf{0}$. Therefore, α_{1} must be zero. Similarly, by considering

$$
\begin{array}{r}
\quad\left(\alpha_{1} \mathbf{a}+\alpha_{2} \mathbf{b}+\alpha_{3} \mathbf{c}\right) \cdot \mathbf{b} \\
\text { and }\left(\alpha_{1} \mathbf{a}+\alpha_{2} \mathbf{b}+\alpha_{3} \mathbf{c}\right) \cdot \mathbf{c}
\end{array}
$$

we can show that α_{2}, and α_{3} are both zero. Hence, the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are linearly independent.
8. (10 Marks) Let $\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \ldots, \mathbf{Y}_{n}\right)$ be a random sample of size n drawn from a population distribution $F_{Y}(y)$. The sample mean is defined as

$$
\bar{Y}=\sum_{i=1}^{n} Y_{i}
$$

What is meant by the statement that the sample mean has a sampling distribution?

Solution:

For each sample taken from the population we can construct a sample mean. Since the observations vary across samples, the sample mean will also vary across samples. The overall variation is captured by the sampling distribution. (Plotting a cumulative relative frequency histogram of the values of the sample mean across all samples generates the sampling distribution.)
9. ($\mathbf{1 0}$ Marks) Hughes Tool Company has a contract to build a piece of equipment it has never built before. The contract requires that the project be completed within 90 days. Let H denote the hypothesis that the project will be completed within 90 days, and let \bar{H} denote the opposite hypothesis that the project will take longer than 90 days to complete. One can assign to H a probability $P(H)$ that represents numerically the degree of a person's belief in H.

Now our contracted company hires a work methods engineer to determine how long it will take to complete the project, and she says that it can be completed within the specified time. This new information, called D (for data), will certainly alter our attitude toward the hypothesis H. Still, we know that the methods engineer is not always correct. After asking
some questions, we determine that 80% of the projects that are completed on time have been correctly forecast as being completed on time by this engineer. That is, $P(D \mid H)=0.8$. We also know that for projects that were not completed on time, the engineer forecasted completion by the deadline 10% of the time; thus $P(D \mid \bar{H})=0.10$.
Please compute a new probability $P(H \mid D)$ of the hypothesis, given the data from the engineer and given that $P(H)=0.3$.

Hint : try to formulate this problem in terms of Bayes' Theorem.

Solution:

A simple application of Bayes' Theorem says that:

$$
P(H \mid D)=\frac{P(D \mid H) P(H)}{P(D)}
$$

We know that $P(D \mid H)=0.8$ and that $P(H)=0.8$. The only term we don't know is $\mathrm{P}(\mathrm{D})$. So how do we determine $\mathrm{P}(\mathrm{D})$? Note that since the events H and \bar{H} are mutually exclusive:

$$
\begin{aligned}
P(D) & =P(D \cap H)+P(D \cap \bar{H}) \\
& =P(D \mid H) P(H)+P(D \mid \bar{H}) P(\bar{H}) \\
& =0.8 \times 0.3+0.1 \times 0.7 \\
& =0.31
\end{aligned}
$$

Then,

$$
\begin{aligned}
P(H \mid D) & =\frac{P(D \mid H) P(H)}{P(D)} \\
& =\frac{0.8 \times 0.3}{0.31} \\
& =0.77 .
\end{aligned}
$$

That is, observing D increases our personal probability of H because H "explains" D better than \bar{H} does: $P(D \mid H)>P(D \mid \bar{H})$.
10. ($\mathbf{1 0}$ Marks) If X is a random number selected from the first 10 positive integers, what is $\mathrm{E}[\mathrm{X}(11-\mathrm{X})]$? What is $\operatorname{Var}[\mathrm{X}(11-\mathrm{X})]$?
Solution: One might be tempted to approach the problem algebraically. That is, by expanding the expectation as follows:

$$
\begin{aligned}
E(X(11-X)) & =E(11 X)-E\left(X^{2}\right) \\
& =11 \times E(X)-E\left(X^{2}\right)
\end{aligned}
$$

and then computing $E(X)$ and $E\left(X^{2}\right)$ for the random variable in question. However, while this works, it is tedious since you need to carry out the calculations for $E\left(X^{2}\right)$ and in the second part of the question, for $V\left(X^{2}\right)$. A somewhat less tedious approach is to simply calculate the realized values of the random variable $X(11-X)$:

X	$\mathrm{X}(11-\mathrm{X})$
1	10
2	18
3	24
4	28
5	30
6	30
7	28
8	24
9	18
10	10

Hence, computing the expectation we have:
$E\left(X(11-X)=\frac{1}{10} \times 10+\frac{1}{10} \times 18+\cdots+\frac{1}{10} \times 10=22\right.$.
Similarly,
$\operatorname{Var}\left(X(11-X)=\frac{1}{10} \times(10-22)^{2}+\frac{1}{10} \times(18-22)^{2}+\cdots+\frac{1}{10} \times(10-22)^{2}=52.8\right.$.

