
Queen’s University
Faculty of Arts and Sciences
Department of Economics

Graduate Methods Review Course 2010
Exit Exam

Instructions: 2 Hours

You are to answer ALL questions. SHOW ALL YOUR WORK. There are a total of 100
possible marks to be obtained and marks are indicated for each question.

1. (10 Marks) Let A, B be convex sets.

(a) Prove that A×B = {(a, b)|a ∈ A, b ∈ B}, that is the set of pairs with the first element
from A and the second element from B, is convex.

(b) Let A,B ⊂ R. Now assume that B is NOT convex. Show using a counterexample that
then A×B is not convex.

Solution:

(a) Let (a1, b1) and (a2, b2) be any two points in A × B. Then the convex combination of
these points is

p = (ta1 + (1− t)a2, tb1 + (1− t)b2)

for all t ∈ [0, 1]. Now, the first element is in A because A is convex and the second
element is in B because B is convex. So p ∈ A×B. Hence, A×B is convex.

(b) Let A = [0, 1] and B = [0, 1/3] ∪ [2/3, 1] then A× B = [0, 1]× [0, 1/3] ∪ [0, 1]× [2/3, 1].
Then (1/4, 1/4) and (3/4, 3/4) are in A×B but their convex combination with t = 1/2
is not: i.e. (1/2, 1/2) /∈ A×B.

2. (10 Marks) Let g(µ) = A(1 + µ)
a

1+b − 1. Find:

(a) dg
dµ .

(b) a linear approximation of g(µ) around the point 0 (i.e. the first-order Taylor series )

For a = 1, b = 7, use the approximation AND g(µ) to compute g(0.1) and find the error of
your approximation.

Solution:

(a) dg
dµ = A

(
a

1+b

)
(1 + µ)

a
1+b
−1

(b) The first-order approximation to g(µ) around µ = 0 is

g(µ) ≈ g(0) +
dg

dµ
(0)(µ− 0)

= A(1 + 0)
a

1+b − 1 + [A

(
a

1 + b

)
(1 + 0)

a
1+b
−1](µ)

= A− 1 +

(
Aa

1 + b

)
µ

= µ/8

using the values A = 1, a = 1, b = 7. Hence, g(0.1) ≈ 0.1/8 = 0.0125. The exact value
of g(0.1) is 0.011985 . . . so our crude approximation isn’t so bad.
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3. (10 Marks) Don’t order “chicken” in K-Town.
If the total number T , of birds that get turned into fresh meat in a week, by Y wind turbines
on Wolf Island is T = a(bY + c)p + kY , where a, b, and c are positive constants, then the
average kill rate is:

T (Y ) =
T

Y
= a

(bY + c)p

Y
+ k (p > 1)

Find the value of Y that maximizes the average kill rate.

Solution: We are trying to find
max
Y

T (Y )

A necessary condition for a maximum is that T
′
(Y ) = 0. Taking the derivative and setting it

to zero we have:

ap(bY + c)p−1

Y
· b+

(
−1

Y 2

)
a(bY + c)p = 0

=⇒ ap(bY + c)p−1

Y
· b =

(
−1

Y 2

)
a(bY + c)p

=⇒ pY

a
= (bY + c)

=⇒ Y =
c

p/a− b

where I have ignored the solution Y = 0 because T is not defined for Y = 0. BUT THIS
IS NOT A MAXIMUM, IT IS A MINIMUM. WHY? Intuitively, for p > 1, the objective is
strictly increasing and convex in Y for Y > 1 and so in fact there is no maximum, more Y is
always increases the kill rate.

4. (10 Marks) Prove that if f and g are both concave, then

h(x) = min{f(x), g(x)}

is concave. Illustrate. (Note that for each given x, h(x) is the smaller of the two numbers
f(x) and g(x).)

Solution: We are going to do what comes naturally here. Let x1 and x2 be any two points.
For any t ∈ [0, 1] denote the convex combination of x1 and x2 as xt = tx1 + (1− t)x2. Then
we are to show that:

h(xt) ≥ th(x1) + (1− t)h(x2)

Assume that h(xt) = f(xt) (one of f(xt) or g(xt) has to be the minimum, I picked f(xt)).
Then, notice that:

h(xt) = f(xt)

≥ tf(x1) + (1− t)f(x2) because f is concave

≥ th(x1) + (1− t)h(x2)

as f(x1) ≥ h(x1) and f(x2) ≥ h(x2) by noting the definition of h(x). Hence h(x) is concave.
Now, if h(xt) = g(xt) the exact same argument can be applied to show that h(x) is concave.

5. (15 Marks) Channelling your inner Keanu Reeves.
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(a) Let A =

(
a b
c d

)
.

i. Show that A2 = (a+ d)A− (ad− bc)I2
ii. Use part (i) to show that A3 = 0 implies that A2 = 0. (Hint: Multiply the equality

in part (a) by A, and use the equality A3 = 0 to derive an equation, which you
should then multiply by A once again. )

iii. Give an example of a matrix A such that A2 = A3 = 0, but A 6= 0.

(b) Suppose P and Q are n× n matrices such that PQ = Q2P . Prove that (PQ)2 = Q6P 2.

Solution:

(a) i. LHS =A2 =

(
a b
c d

)
·
(
a b
c d

)
=

(
a2 + bc ab+ bd
ca+ dc cb+ d2

)
. RHS = (a+d)

(
a b
c d

)
−

(ad− bc)
(

1 0
0 1

)
=

ii. Multiplying A2 = (a+ d)A− (ad− bc)I2 by A once we have:

A ·A2 = A · (a+ d)A−A · (ad− bc)I2
=⇒ A3 = (a+ d)A2 − (ad− bc)A as a+ d and (ad− bc) are just numbers

=⇒ 0 = (a+ d)A2 − (ad− bc)A using A3 = 0

=⇒ A · 0 = (a+ d)A3 − (ad− bc)A2 multiplying by A again

=⇒ 0 = (a+ d)0− (ad− bc)A2 using A3 = 0

=⇒ (ad− bc)A2 = 0

Now, as long as (ad− bc) 6= 0, the only way (ad− bc)A2 = 0 can be the zero matrix
is if A2 = 0.

iii.

(
1 −1
1 −1

)2

=

(
0 0
0 0

)
and

(
1 −1
1 −1

)3

=

(
0 0
0 0

)
·
(

1 −1
1 −1

)
= 0

(b) This is just a matrix multiplication exercise:

(PQ)2 = (PQ)(PQ)

= Q2PQ2P using PQ = Q2P

= QQPQQP

= QQ(PQ)QP

= QQ(Q2P )QP again using PQ = Q2P

= QQQQPQP

= Q4(PQ)P

= Q4(Q2P )P yet again using PQ = Q2P

= Q4Q2PP

= Q6P 2

6. (10 Marks) Recall that the span of a vector space is the set of all linear combinations of its
elements. If S, T are subsets of a vector space V , then prove that

(a) S ⊂ T implies span(S) ⊂ span(T )
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(b) span(span(S)) = span(S)

Solution:

(i) If S ⊂ T then every element in S is also in T . Now span(S) contains all the linear
combinations of the elements of S. But since T also contains all the elements of S, span(T )
also contains all the linear combination of the elements of S. Another way of saying this is:
span(S) ⊂ span(T ).

(ii) We need to show (1) span(span(S)) ⊂ span(S) and (2) span(S) ⊂ span(span(S))

(1) Let l1 =
∑n

i=1 aisi = a1s1 +a2s2 + · · ·+ansn and l2 =
∑n

i=1 bisi = b1s1 + b2s2 + · · ·+ bnsn
be two linear combinations of the elements of S. Then, the linear combination of l1 and l2 is
just:

c1l1 + c2l2 =
n∑
i=1

(c1ai + c2bi)si = (c1a1 + c2b1)s1 + (c1a2 + c2b2)s2 + · · ·+ (c1an + c2bn)sn

which is just a linear combination of the elements of S and so is in span(S). Hence,
span(span(S)) ⊂ span(S).
(2) This is trivial as span(span(S)) contains all the elements of span(S). That is, any el-
ement, say l1 of span(S) can be written as a trivial linear combination of the elements in
span(S), namely 1 · l1.

7. (10 Marks) Some Cobb-Douglasing.

(a) The following modified version of the Cobb-Douglas function has been used in some
economic studies:

F (K,L) = AKaLbecK/L (A, a, b, and c are positive constants)

Compare the marginal products FK and FL and discuss their signs.

(b) For the general Cobb-Douglas function F in logarithmic form,

logF = logA+ a1 log x1 + a2 log x2 + · · ·+ an log xn

show that
n∑
i=1

xi
∂F

∂xi
= (a1 + a2 + · · ·+ an)F

Solution:

(a) Differentiation respect to K we have:

FK = AaKa−1LbecK/L +AKaLb(c/L)ecK/L > 0

because A, a, c,K,L are all positive. So the marginal product of capital is certainly
always positive. Similarly, differentiation with respect to L we have:

FL = AbKaLb−1ecK/L +AKaLb(−cK/L2)ecK/L
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which is positive if and only if b > L(cK/L2) = cK/L or K/L < b/c. So the marginal
product of labour may not always be positive.

(b) Notice that F = exp(logA+ a1 log x1 + a2 log x2 + · · ·+ an log xn). So,

∂F

∂xi
= exp(logA+ a1 log x1 + a2 log x2 + · · ·+ an log xn) · (ai/xi)

Then

n∑
i=1

xi
∂F

∂xi
=

n∑
i=1

xi · exp(logA+ a1 log x1 + a2 log x2 + · · ·+ an log xn) · (ai/xi)

=
n∑
i=1

exp(logA+ a1 log x1 + a2 log x2 + · · ·+ an log xn) · ai

=
n∑
i=1

F · ai

= F (
n∑
i=1

ai)

= F (a1 + a2 + · · ·+ an)

8. (15 Marks) Feeling constrained.

(a) Find the values of x, y, z that maximize the function f(x, y, z) = Axaybzc subject to
px + qy + rz = m. (Assume that the constants A, a, b, c, p, q, r,m are all positive and
a+ b+ c ≤ 1.)

(b) Verify the second-order condition for a maximum.

(c) Using the Envelope Theorem find the following derivatives: df∗

da ,
df∗

dA ,
df∗

dq and df∗

dm .

Solution:

(a) This a problem with one equality constraint so we form the Lagrangian as follows:

L(x, y, z, λ) = Axaybzc − λ[px+ qy + rz −m]

Taking first-order conditions we have:

x :aAxa−1ybzc − λp = 0

y :bAxayb−1zc − λq = 0

z :cAxaybzc−1 − λr = 0

λ :px+ qy + rz −m = 0

Then, solving out for the multiplier in each of the first three equations we have:

λ =
aAxa−1ybzc

p
=
bAxayb−1zc

q
=
cAxaybzc−1

r

Simplifying these three equations we have using the first two:

ay/p = bx/q
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or y = bp
aqx. Then using the first and third we have:

az/p = cx/r

or z = cp
arx. Substituting these two equations in the first-order equation with respect to

λ (that is the budget constraint) we have:

px+ q
bp

aq
x+ r

cp

ar
x = m =⇒ x =

m

p+ bp/a+ cp/a

Now, solving for the other variables we have:

y =
bp

aq
x =

bpm

aq(p+ bp/a+ cp/a)
=

m

q + aq/b+ cq/b

z =
cp

ar
x =

cpm

ar(p+ bp/a+ cp/a)
=

m

r + ar/c+ br/c

and notice that the relations for λ this implies that λ > 0 so that the constraint binds.

(b) (skip - ugly but straight-forward, construct bordered Hessian and then take the plunge!)

(c) Using the Envelope theorem we have:

∂f∗

∂a
=
∂L

∂a
= aAxa−1ybzc > 0

∂f∗

∂A
=
∂L

∂A
= xaybzc > 0

∂f∗

∂q
=
∂L

∂q
= λx > 0

∂f∗

∂m
=
∂L

∂m
= λ > 0

9. (10 Marks) Af heals Canada (with apologies to Albertans).
Af gets a call from the Big O(h) who commands Af to start healing Canada. So he gives up his
dreams of wearing suit jackets with elbow patches and sipping cherry at post-seminar ‘wine
and cheese’ sessions. Instead, he becomes an environmentalist and moves to Fort McMurray.
To heal the planet he needs money so he starts producing electricity from oil sands. He finds
that the demand for electricity varies between peak-periods, during which all the generating
capacity is used, and off-peak periods. Sales of electric power in n periods are x1, x2, . . . , xn.
Trying to comply with local customs, after a careful reading of Mark 12:15, Af finds that
Jesus would have wanted the prices in the n periods to be p1, p2, . . . , pn. The total operating
cost over all n periods is C(x1, . . . , xn), and k is the output capacity in each period. The cost
of maintaining output capacity k is D(k). Af’s profit is then

π(x1, x2, . . . , xn) =

n∑
i=1

pixi − C(x1, . . . , xn)−D(k)

Because he cannot exceed capacity k in any period, he faces the constraints

x1 ≤ k, x2 ≤ k, . . . , xn ≤ k

Find the sales that will maximize Af’s profits and lead to the healing of the planet.

6



Solution: The Lagrangian is L is:

L(x1, . . . , xn, k) =
n∑
i=1

pixi − C(x1, · · · , xn)−D(k)−
n∑
i=1

λi(xi − k)

The choice (x∗1, . . . , x
∗
n, k
∗) ≥ 0 can solve the problem only if there exist Lagrange multipliers

λ1 ≥ 0, . . . , λn ≥ 0 such that

∂L

∂xi
= pi − C ′i(x∗i , . . . , x∗n)− λi ≤ 0 (= 0 if x∗i > 0) (1)

∂L

∂k
= −D′(k∗) +

n∑
i=1

λi ≤ 0 (= 0 if k∗ > 0) (2)

λi ≥ 0 (= 0 if x∗i < k∗) (3)

Suppose i is such that x∗i > 0. Then implies that:

pi = C ′i(x
∗
1, . . . , x

∗
n) + λi (4)

If period i is an off-peak period, then x∗i < k∗ and so λi = 0 by (3). From (4), it follows that
pi = C ′0(x

∗
1, . . . , x

∗
n). Thus, we see that the profit maximizing pattern of outputs (x∗1, . . . , x

∗
n)

will bring about equality between the price in any off-peak period and the corresponding
marginal operating cost. On the other hand, λj might be positive in a peak period when
x∗j = k∗. If k∗ > 0, if follows from (2) that

∑n
i=1 λi = D′(k∗).

We conclude that the output pattern will be such that in peak periods the price set will
exceed the marginal operating cost by an additional amount λi, which is really the “shadow
price” of the capacity constraint xi ≤ k. The sum of these shadow prices over all peak periods
is equal to the marginal capacity cost.
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