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            Suggested Solutions to Assignment 5 (OPTIONAL) 
 

 

 

Part B   Problem Solving Questions   
 

Read each part of the question very carefully. Show all the steps of your calculations to 

get full marks.  

 

B1. 

 

Exercise 3 of Chapter 8 of the textbook: Part 1, 2, 3 and 4. You do NOT have to 

solve Part 5 of this question. 

 

B2. 

 

Exercise 4 of Chapter 8 of the textbook. 

 

B3. 

 

Exercise 5 of Chapter 8 of the textbook: Part 1 and 2. 

 

B4. 

 

Exercise 6 of Chapter 8 of the textbook: Part 1, 2 and 3. You do NOT have to solve 

Part 4 of this question. 
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In the special case where φ = 0 we get:

λ = (1− α)

∙
1− 1− δ

1 + n

¸
= (1− α)

1 + n− (1− δ)

1 + n

=
1

1 + n
(1− α) (n+ δ) .

This corresponds to (35) of Chapter 5 with g = 0. Setting φ = 0 eliminates the productive

externality and reduces the model to the general Solow model with g = 0 (or to the basic

Solow model).

When φ goes to 1, the term (1 − φ) appearing in the general expression for λ goes

to zero, implying that the exponent 1/ (1− φ) goes to infinity. Under our assumption,

(1 + n)
1

1−φ > 1−δ, the square bracket goes to a finite value as φ goes to one. Hence λ goes

to zero because of the presence of the factor (1− φ). A larger φ means a larger impact of

the productive externality, reducing the degree of diminishing returns to capital (and to

capital per worker), see the expression for Yt above. It has been explained at several places,

e.g. in Section 1 of this chapter, that diminishing returns to capital causes convergence, so

as diminishing returns disappears convergence becomes more and more slow. When φ = 1,

the productive externality is strong enough to completely eliminate diminishing returns,

implying no convergence at all.

Exercise 8.3: The model of semi-endogenous growth (φ < 1) with the pro-

ductive externality coming from Kt/Lt rather than from Kt

The learning effect may well come from ’working with computers as such’, not neces-

sarily from having one each. This speaks for the external affect arising from Kt, not from

Kt/Lt. On the other hand, the learning effect may be stronger if each worker has more

time with a computer, speaking for the external effect arising from Kt/Lt. None of the

formulations (the external effect arising from Kt or from Kt/Lt) is therefore to be consid-



Endogenous Growth: Productive Externalities 5

ered right or wrong. Rather these two cases cover the interesting possibilities, being the

two relevant ’end points’.

1. From At = (Kt/Lt)
φ and Lt+1 = (1 + n)Lt:

At+1

At
=

µ
Kt+1

Lt (1 + n)

¶φ

/

µ
Kt

Lt

¶φ

=

³
Kt+1

Kt

´φ
(1 + n)φ

.

For the transition equation proceed as in the chapter:

k̃t+1

k̃t
=

Kt+1

Kt

At+1
At

Lt+1
Lt

=

Kt+1

Kt

Kt+1
Kt

φ

(1+n)φ
(1 + n)

=

µ
1

1 + n

¶1−φµ
Kt+1

Kt

¶1−φ
. (A)

Inserting from (6), implying ỹt = k̃αt , and from (8) and (9) we get:

k̃t+1

k̃t
=

µ
1

1 + n

¶1−φµ
sYt + (1− δ)Kt

Kt

¶1−φ
=

µ
1

1 + n

¶1−φµ
s
Yt
Kt
+ (1− δ)

¶1−φ
=

µ
1

1 + n

¶1−φµ
s
ỹt

k̃t
+ (1− δ)

¶1−φ
⇔

k̃t+1 =

µ
1

1 + n

¶1−φ
k̃t

µ
s
³
k̃t
´α−1

+ (1− δ)

¶1−φ
.

2. The steady state value k̃∗ for k̃t is found by inserting k̃t = k̃t+1 = k̃∗ in the transition

equation:

1 =

µ
1

1 + n

¶1−φµ
s
³
k̃∗
´α−1

+ (1− δ)

¶1−φ
⇔

1 + n = s
³
k̃∗
´α−1

+ (1− δ)⇔

k̃∗ =

µ
s

n+ δ

¶ 1
1−α

.

Insert this into ỹt = k̃αt to find that:

ỹ∗ =

µ
s

n+ δ

¶ α
1−α

.
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In steady state we have that k̃t+1/k̃t = 1. Insert this into the expression for k̃t+1/k̃t used

in Question 1 to find: µ
1

1 + n

¶1−φµ
Kt+1

Kt

¶1−φ
= 1⇔

Kt+1

Kt
= 1 + n.

Inserting this into the above expression for At+1/At shows that At+1/At = 1. Hence there

is no growth in At in steady state. Since both k̃t = kt/At and At are constant in steady

state, so must kt be. Furthermore, Since both ỹt = yt/At and At are constant in steady

state, so must yt be.

3. Insert At = (Kt/L)
φ into the production function, (6), to find:

Yt = Kα
t

Ãµ
Kt

Lt

¶φ

Lt

!1−α
= K

α+φ(1−α)
t L

(1−α)(1−φ)
t .

Labour is productive at the aggregate level, when φ < 1 (which it is not when φ = 1).

However, with the productive externality arising from Kt/Lt, the aggregate production

function exhibits constant returns toKt and Lt (since the sum of exponents, α+φ (1− α)+

(1− α) (1− φ), equals one). As explained in the chapter, increasing returns to capital and

labour in the aggregate production function are fundamental for semi-endogenous growth.

Since returns to scale are no longer increasing there cannot be semi-endogenous growth.

4. Using that kt = k̃tAt and At = kφt we find that in steady state:

kt =

µ
s

n+ δ

¶ 1
1−α

kφt ⇔

k1−φt =

µ
s

n+ δ

¶ 1
1−α

⇔

k∗ =

µ
s

n+ δ

¶ 1
(1−α)(1−φ)

.
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Inserting into the per capita production function, yt = kαt At
1−α, along with At = kφt , one

gets for y∗:

y∗ =

µ
s

n+ δ

¶ α
(1−α)(1−φ)

µ
s

n+ δ

¶ φ(1−α)
(1−α)(1−φ)

=

µ
s

n+ δ

¶ α+φ(1−α)
(1−α)(1−φ)

.

Hence the constant steady state level of capital per worker and of output per worker

depend on φ: under the (realistic) assumption that s > n + δ, a larger φ gives higher

capital and income per worker in steady state. This is a natural consequence of the fact

that for Kt/Lt larger than one, the aggregate economy simply becomes more productive

the larger φ is (since At = (Kt/Lt)
φ), and if the investment rate is sufficiently large relative

to the depreciation and population growth rates, capital per worker will indeed be larger

than one in steady state.

5. Linearizing the transition equation around steady state etc. (see Exercise 2 or Chap-

ter 5) gives us the usual first order difference equation in ỹt:

ln ỹt+1 − ln ỹt = λ (ln ỹ∗ − ln ỹt) , λ = 1−G0
³
k̃∗
´
,

where now:

G(k̃t) =

µ
1

1 + n

¶1−φ
k̃t

µ
s
³
k̃t
´α−1

+ (1− δ)

¶1−φ
.

Hence:

G0(k̃t) =

µ
1

1 + n

¶1−φµ
s
³
k̃t
´α−1

+ (1− δ)

¶1−φ ⎡⎢⎣1 + (1− φ) s (α− 1)
³
k̃t
´α−1

s
³
k̃t

´α−1
+ (1− δ)

⎤⎥⎦ .
Now, insert the expression for k̃∗ in place of k̃t to get:

G0(k̃∗) =

µ
1

1 + n

¶1−φÃ
s

µ
s

n+ δ

¶α−1
1−α

+ (1− δ)

!1−φ ⎡⎣1 + (1− φ) s (α− 1)
¡

s
n+δ

¢α−1
1−α

s
¡

s
n+δ

¢α−1
1−α + (1− δ)

⎤⎦
=

µ
1

1 + n

¶1−φ
(1 + n)1−φ

∙
1− (1− φ) (1− α) (n+ δ)

1 + n

¸
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Hence, the rate of convergence is:

λ = 1−G0
³
k̃∗
´

= 1−
µ

1

1 + n

¶1−φ
(1 + n)1−φ

∙
1− (1− φ) (1− α) (n+ δ)

1 + n

¸
.

Insert φ = 1 to find the limit of λ as φ goes to 1:

λ = 1−
µ

1

1 + n

¶0
(1 + n)0 [1− 0] = 0.

Exercise 8.4 Balanced growth

The model of semi-endogenous growth: Since - by definition of k̃t and ỹt - we

have that kt = k̃tAt and yt = ỹtAt, and since k̃t and ỹt are constant in steady state, kt

and yt must grow at the same rate as At in steady state, which is the rate gse given by

(17). Since ct = (1− s) yt, consumption per worker also grows at this rate. From (3) and

(5) follows that wtLt = (1− α)Yt ⇔ wt = (1− α)yt, and that rtKt = αYt ⇔ rt = αỹt/k̃t.

These show, respectively, that the wage rate grows at the rate gse in steady state, and that

the real rate of return on capital is constant in steady state.

The model of endogenous growth: Equation (24) shows directly that the growth

rate of kt is constant and given by ge = sA− δ. Furthermore, yt = Akt and ct = (1− s) yt

imply that yt and ct grow at rate ge. From (19) we can conclude that rt is constant and

that wt grows at the same rate as Kt and kt.

Exercise 8.5. Explosive endogenous growth

1.We can analyze this model much like we analyzed the ’AK-model’ in the chapter, but,

crucially, that model’s A is not a constant when there is population growth. Combining

(6) and (7) for φ = 1 gives:

Yt = KtL
1−α
t ⇔ yt = ktL

1−α
t .
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(In the chapter Lt was constant and we defined A ≡ L1−α etc.).

Dividing on both sides of the capital accumulation equation (8) by Lt+1 (= (1 + n)Lt)

gives:

kt+1 =
1

1 + n
(syt + (1− δ) kt) ,

and then using the expression above for yt:

kt+1 =
1

1 + n

¡
sktL

1−α
t + (1− δ) kt

¢
⇔

kt+1 − kt
kt

=
1

1 + n

£
sL1−αt − (n+ δ)

¤
.

Inserting that Lt = L0(1 + n)t gives:

kt+1 − kt
kt

=
1

1 + n

£
sL1−α0 (1 + n)(1−α)t − (n+ δ)

¤
≡ gk,t.

For the growth rate of yt use that from yt = ktL
1−α
t follows yt+1 = kt+1L

1−α
t+1 = kt+1 (1 + n)1−α L1−αt .

Combining these gives:

gy,t ≡
yt+1 − yt

yt
=
(1 + n)1−α kt+1 − kt

kt
.

Here we can insert that kt+1 = (1 + gk,t)kt giving:

gy,t = (1 + n)1−α (1 + gk,t)− 1.

Inserting the gk,t found above then gives:

gy,t = (1 + n)1−α
1

1 + n

£
sL1−α0 (1 + n)(1−α)t + 1− δ

¤
− 1

=

µ
1

1 + n

¶α £
sL1−α0 (1 + n)(1−α)t + 1− δ

¤
− 1.

One can see that both gk,t and gy,t increase over time and go to infinity.

2. Inserting At = Kφ
t into the production function, Y = Kα

t (AtL)
1−α gives:

Yt = Kα
t (K

φ
t L)

1−α = AK
1+(1−α)(φ−1)
t , A ≡ L1−α.
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This is inserted into (8) to find the transition equation for Kt:

Kt+1 = sAK
1+(1−α)(φ−1)
t + (1− δ)Kt.

The usual requirement for a steady state value K∗ for Kt is Kt = Kt+1 = K∗ yielding:

1 = sA (K∗)(1−α)(φ−1) + 1− δ ⇔

K∗ =

∙
δ

sA

¸ 1
(1−α)(φ−1)

,

so indeed there is such a steady state. The strange feature about it is that a larger savings

and investment rate or population size (remember that A = L1−α) results in a lower steady

state level of capital, whereas a larger depreciation rate gives a lower more capital in steady

state.

The Solow equation is:

Kt+1 −Kt = sAK
1+(1−α)(φ−1)
t − δKt.

The Solow diagram illustrating the Solow equation looks as shown below. Since the expo-

nent on Kt fulfils 1+ (1−α)(φ− 1) > 1 when φ > 1, the curve sAK1+(1−α)(φ−1)
t looks like

a x2-function: as Kt goes to zero the slope goes to 0, and as Kt goes to infinity the slope

goes to infinity.

The diagram shows that K∗ is unstable, that is, if Kt < K∗ for some t, then Kt will

decrease and converge towards zero, while if Kt > K∗ in period t, then Kt will increase

towards infinity.
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KtK*

δKt

sAKt
1+(1- )( -1)α φ

Divide the Solow equation by Kt on both sides to find the modified Solow equation:

Kt+1 −Kt

Kt
= sAK

(1−α)(φ−1)
t − δ,

illustrated in the modified Solow diagram below. Since the exponent on Kt fulfils 0 <

(1− α)(φ− 1) < 1 (remember φ < 2) the curve sAK(1−α)(φ−1)
t looks a

√
x-function.

If Kt > K∗ the growth rate is increasing and since sAK(1−α)(φ−1)
t goes to infinity as

Kt goes to infinity, the growth rate (Kt+1 −Kt) /Kt goes to infinity as Kt does. Moreover,

when Kt < K∗ the growth rate of Kt is decreasing and eventually goes to zero. Since the

population size is constant, kt ≡ Kt/L and its growth rate evolve similarly to Kt and the

growth rate of Kt. Since Yt = AK
1+(1−α)(φ−1)
t , similar behaviour follows for Yt and yt.
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KtK*

δ

sAKt
(1- )( -1)α φ

K - Kt+1  t

Kt
<0

K -Kt+1  t

Kt
>0

Exercise 8.6. Endogenous growth with both physical and human capital

See Excel spread sheet for this exercise: Chapter-08-Exc-01-Sol.

1. Insert the expression for the productive externality along with Kd
t = Kt, Hd

t = Ht,

Ld
t = L, and φ = 1 into the production function for the individual firm:

Yt = Kα
t H

ϕ
t

³
K

α
α+ϕ

t H
ϕ

α+ϕ

t L
´1−α−ϕ

= L1−α−ϕK
α(α+ϕ)+α(1−α−ϕ)

α+ϕ

t H
ϕ(α+ϕ)+ϕ(1−α−ϕ)

α+ϕ

t

= L1−α−ϕK
α

α+ϕ

t H
ϕ

α+ϕ

t

= AKν
t H

1−ν
t , A ≡ L1−α−ϕ, ν ≡ α

α+ ϕ
.

A knife edge case such as φ = 1 is improbable in real life, but we can view φ = 1 as an

approximation of a φ below, but close to one.

2. Using the capital accumulation equations for Kt and Ht in the definition of xt+1 we
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find that:

xt+1 ≡
Kt+1

Ht+1
=

sKYt + (1− δ)Kt

sHYt + (1− δ)Ht
.

Inserting Yt = AKν
t H

1−ν
t = A (Kt/Ht)

ν Ht = AxνtHt gives the transition equation for xt:

xt+1 =
sKAx

ν
tHt + (1− δ)Kt

sHAxνtHt + (1− δ)Ht

=
sKAx

ν
t + (1− δ)xt

sHAxνt + (1− δ)
.

To show the existence of a steady state x∗, set xt+1 = xt = x∗ in the transition equation:

x∗ =
sKA (x

∗)ν + (1− δ)x∗

sHA (x∗)
ν + (1− δ)

⇔

x∗ [sHA (x
∗)ν + (1− δ)] = sKA (x

∗)ν + (1− δ)x∗ ⇔

x∗ =
sK
sH

.

This shows that there exists a unique positive point of intersection between the transition

curve and the 45◦-line.

The transition curve obviously passes through (0, 0). Convergence of xt to x∗ is therefore

implied if the transition curve is everywhere increasing and its slope at zero is greater than

one (a figure may be nice to look at here). Differentiate with respect to xt:

∂xt+1
∂xt

=

£
νsKAx

ν−1
t + (1− δ)

¤
[sHAx

ν
t + (1− δ)]− νsHAx

ν−1
t [sKAx

ν
t + (1− δ) xt]

[sHAxνt + (1− δ)]2

=
(1− δ) [sHAx

ν
t + (1− δ)] + νsKAx

ν−1
t (1− δ)− νsHAx

ν−1
t (1− δ)xt

[sHAxνt + (1− δ)]2

=
(1− δ)

£
(1− ν)sHAx

ν
t + (1− δ) + νsKAx

ν−1
t

¤
[sHAxνt + (1− δ)]2

.

Obviously, ∂xt+1/∂xt > 0, and furthermore ∂xt+1/∂xt goes to infinity as xt goes to zero

because of the term with xν−1t (recall that ν < 1). This shows that xt converges to x∗ from

any (strictly positive) initial value of xt.



Endogenous Growth: Productive Externalities 14

3. From the capital accumulation equations and Yt = A (Kt/Ht)
ν Ht we find for the

growth rates of Kt and Ht:

gKt ≡ Kt+1 −Kt

Kt
=

sKYt − δKt

Kt

= sKA

µ
Kt

Ht

¶ν−1
− δ,

gHt ≡ Ht+1 −Ht

Ht
=

sHYt − δHt

Ht

= sHA

µ
Kt

Ht

¶ν

− δ.

Insert the steady state value x∗ = sK/sH for Kt/Ht in both of these to find the common

growth rate in steady state:

g = gK = gH = sνKs
1−ν
H A− δ.

Use Yt = AKν
t H

1−ν
t to see that:

Yt+1 − Yt
Yt

=
Yt+1
Yt
− 1 =

µ
Kt+1

Kt

¶ν µ
Ht+1

Ht

¶1−ν
− 1

Hence, in steady state:µ
Yt+1 − Yt

Yt

¶∗
= (1 + g)ν (1 + g)1−ν − 1 = g,

and g is also the steady state growth rate of yt, since there is no growth in the labour

force.

4. The figure below plots g00,60 against sH for 80 countries:


