
Binary Response Models

Binary Response Models

A binary dependent variable can take on only two values, which for
practical reasons are usually coded as 0 and 1.

For example, a person may be in or out of the labor force, a commuter
may drive to work or take public transit, a household may own or rent
the home it resides in, and so on.

A binary response model tries to explain the probability that an agent
chooses alternative 1 as a function of observed explanatory variables.

Let Pi denote Pr(yi = 1 |Ωi), where Ωi denotes an information set. A
binary response model attempts to model this conditional probability.

A binary response model can also be thought of as modeling a
conditional expectation, since

Pi ≡ Pr(yi = 1 |Ωi) = E(yi |Ωi). (1)
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Binary Response Models

Any reasonable binary response model must ensure that E(yi |Ωi) lies
in the 0-1 interval.

Commonly used models ensure that 0 < Pi < 1 by specifying that

Pi ≡ E(yi |Ωi) = F(Xiβ). (2)

Here Xiβ is an index function, which maps from Xi and β to a scalar
index, and F(x) is a transformation function, for which

F(−∞) = 0, F(∞) = 1, and f (x) ≡ dF(x)
dx

> 0. (3)

These are the properties of a CDF. Although Xiβ can take any value on
the real line, the value of F(Xiβ) must lie between 0 and 1.

Because F(x) has to be nonlinear, changes in the values of the xij, the
elements of Xi, necessarily affect E(yi |Ωi) in a nonlinear fashion.

November 26, 2024 2 / 19



Binary Response Models

Specifically, when Pi is given by (2), its derivative with respect to xij is

∂Pi

∂xij
=

∂F(Xiβ)

∂xij
= f (Xiβ)βj, (4)

where βj is the j th element of β.

• For the usual transformation functions, f (Xiβ) achieves a maximum
at Xiβ = 0 and then falls as |Xiβ| increases.

• Thus the effect on Pi of a change in one of the independent variables
is greatest when Pi = 0.5 and very small when Pi is close to 0 or 1.

This makes sense. Consider the probability of owning a house when
one of the regressors is income, or even log income.

• The effect of moving from $100,000 to $120,000 is surely much
greater than the effect of moving from $500,000 to $520,000.

However, assuming that F(x) takes any particular functional form is
quite a strong assumption.
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The Probit Model

The Probit Model

One of two widely-used choices for F(x) is the cumulative standard
normal distribution function,

Φ(x) ≡ 1√
2π

∫ x

−∞
exp

(
− 1

2
X2)dX. (5)

When F(Xiβ) = Φ(Xiβ), (2) is called the probit model.

There is no closed-form expression for Φ(x), but it is easily evaluated
numerically. Its first derivative is ϕ(x), the standard normal density.

The probit model can be derived from a model involving an
unobserved, or latent, variable y◦i . Suppose that

y◦i = Xiβ + ui, ui ∼ NID(0, 1). (6)

We observe only the sign of y◦i , which determines the value of the
observed binary variable yi.
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The Probit Model

The latent variable y◦i determines yi by the equations

yi = 1 if y◦i > 0; yi = 0 if y◦i ≤ 0. (7)

Think of y◦i as an index of the utility associated with some action. If the
action yields positive utility, it is undertaken; otherwise, it is not.

We set Var(ui) = 1 because it is not identified. If Var(ui) were some
other value, say σ2, we could divide β, y◦i , and ui by σ. Then
Var(ui/σ) = 1, but the value of yi would be unchanged.

We can now compute Pi, the probability that yi = 1. It is

Pr(yi = 1) = Pr(y◦i > 0) = Pr(Xiβ + ui > 0) (8)
= Pr(ui > −Xiβ) = Pr(ui ≤ Xiβ) = Φ(Xiβ). (9)

This uses the symmetry of the normal distribution.

The final result is what we get by substituting Φ(Xiβ) for F(Xiβ) in
(2). We did not really need the latent variable model.
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The Logit Model

The Logit Model

The logit model, sometimes called logistic regression, is very similar
to the probit model.

The function F(x) is now the logistic function

Λ(x) ≡ 1
1 + e−x =

ex

1 + ex , (10)

which has first derivative

λ(x) ≡ ex

(1 + ex)2 = Λ(x)Λ(−x). (11)

Because this first derivative is symmetric around zero,
Λ(−x) = 1 − Λ(x).

The figure shows the logistic and standard normal distribution
functions, plus logistic rescaled to have variance 1 instead of π2/3.
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The Logit Model

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

.........................................................................................................................................................................................................................
.........................................

.........................
.......................
...................
..................
................
................
...............
................
...............
...............
...............
..............
..............
..............
...............
..............
..............
..............
..............
..............
..............
..............
.............
..............
.............
..............
.............
.............
..............
..............
..............
.............
..............
..............
..............
.............
..............
..............
..............
..............
..............
.............
..............
..............
..............
..............
..............
..............
..............
..............
..............
...............
...............
................
...............
................
................
.................
..................
....................
.......................
..............................

................................................
......................................................................................................................................................................................................

..............................................................................................................................................
.................................................................

................................................
......................................

..............................
..........................
.......................
.......................
....................
....................
..................
...................
.................
.................
..................
................
................
...............
.................
...............
................
...............
..............
...............
...............
...............
...............
................
...............
..............
...............
................
...............
...............
................
...............
..............
...............
................
...............
...............
...............
...............
...............
................
...............
................
................
.................
................
..................
.................
..................
..................
..................
....................
....................
.......................
.......................
..........................
..............................

......................................
................................................

...............................................................
.........................................................................................................................................

........

........................................................................................................................................................................
........................

..................
.............
...........
............
............
............
............
............
............
...........
.......
...........
.......
...........
.......
...........
.......
...........
.......
...........
.......
...........
.......
...........
.......
...........
.......
...........
.......
............
............
............
............
............
............
............
............
............
.............
.................
........................

......................................................................................................
..................................................................

...................................................................................................................................... Standard Normal

.................................................................................................... .............Logistic

......................................................................................................................................... .............Rescaled Logistic

x

F (x)

November 26, 2024 7 / 19



The Logit Model

The logit model is most easily derived by assuming that

log
(

Pi

1 − Pi

)
= Xiβ, (12)

which says that the logarithm of the odds (that is, the ratio of the two
probabilities) is equal to Xiβ. Solving for Pi, we find that

Pi =
exp(Xiβ)

1 + exp(Xiβ)
=

1
1 + exp(−Xiβ)

= Λ(Xiβ). (13)

This result is what we would get by letting Λ(Xiβ) play the role of the
transformation function F(Xiβ) in (2).

We can also derive the logit model from a latent variable model like (7)
using an extreme value distribution.

Logit and probit models generally yield very similar results.

Logit estimates generally have the same signs as probit ones, but are
larger in absolute value; t statistics tend to be very similar.
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Maximum Likelihood Estimation

Maximum Likelihood Estimation

Loglikelihood function for any linear-index binary response model:

ℓ(y, β) =
N

∑
i=1

(
yi log F(Xiβ) + (1 − yi) log

(
1 − F(Xiβ)

))
, (14)

because Pr(yi = 1) = F(Xiβ) and Pr(yi = 0) = 1 − F(Xiβ). The
maximum possible value of (14) is 0.

For the logit and probit models, symmetry implies that we can replace
1 − F(Xiβ) by F(−Xiβ) in the second term of (14). Always do this!

In the case of the logit model, (14) can also be written as
N

∑
i=1

(
yi(Xiβ)− log

(
1 + exp(Xiβ)

))
. (15)

This version is popular in the statistical learning literature.
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Maximum Likelihood Estimation

The first-order conditions, or likelihood equations are

N

∑
i=1

(
yi − F(Xiβ)

)
f (Xiβ)xij

F(Xiβ)F(−Xiβ)
= 0, j = 1, . . . , k. (16)

It is not hard to find β̂ that satisfies these conditions, because (14) is
globally concave in β.

Conditions (16) look just like the first-order conditions for weighted
least-squares estimation of the nonlinear regression model

yi = F(Xiβ) + vi, (17)

where the weight for observation i is(
F(Xiβ) F(−Xiβ)

)−1/2
. (18)

This weight is one over the square root of the variance of
vi ≡ yi − F(Xiβ), which is a binary random variable.
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Perfect Classifiers

Perfect Classifiers

ML estimation of a binary response model fails when it fits too well.

Suppose there is some linear combination of the independent
variables, say Xiβ

•, such that

yi = 0 whenever Xiβ
• < 0, and (19)

yi = 1 whenever Xiβ
• > 0. (20)

If so, it is possible to make ℓ(y, β) arbitrarily close to 0 by setting
β = γβ• and letting γ → ∞. Then Xiβ

• is a perfect classifier.

Numerical optimization methods fail when there is a perfect classifier.
The algorithm typically terminates at ℓ(y, β̈) ∼= 0 with all elements of β̈
large in absolute value.

Geometrically, a perfect classifier exists if there is a separating
hyperplane; see the figure. Note that β• is not unique.
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Perfect Classifiers
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Inference

Inference

It can be shown that

Var
(

N1/2(β̂ − β0)
)
= plim

N→∞

( 1
N

X⊤Υ(β0)X
)−1

, (21)

where X is an N × k matrix with typical row Xi, β0 is the true value of
β, and the N × N diagonal matrix Υ(β) has typical diagonal element

Υi(β) ≡ f 2(Xiβ)

F(Xiβ)F(−Xiβ)
. (22)

In practice, we use the covariance matrix estimator

V̂ar(β̂) =
(
X⊤Υ(β̂)X

)−1. (23)

This gives us asymptotically valid standard errors, t statistics, Wald
statistics, and confidence intervals.
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Inference

Consider the GNR

yi − F(Xiβ) = f (Xiβ)Xib + residual. (24)

It is not valid here, because the disturbances are not homoskedastic.

The variance of yi − F(Xiβ) is Vi(β) = F(Xiβ)F(−Xiβ).

Dividing (24) by the square root of Vi(β) yields the binary response
model regression, or BRMR. It is

V−1/2
i (β)

(
yi − F(Xiβ)

)
= V−1/2

i (β) f (Xiβ)Xib + residual. (25)

Running this at β̂ yields the covariance matrix (23), multiplied by s2,
the squared standard error of the BRMR. Since s2 → 1, this is valid, but
it is better to divide by s2.

We can also use the BRMR within a nonlinear optimization procedure
or to test restrictions on β.
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Inference

Recall that OLS regressions fit too well, causing ||û|| < ||u||. Binary
response models also tend to fit too well. The F(Xiβ̂) tend to be closer
to 0 and 1 than the F(Xiβ0).

Overfitting causes the elements of β̂ to be biased away from zero.

One way to reduce bias is to use a parametric bootstrap. If we
generate B bootstrap samples using β̂, we can estimate the bias as

Bias∗(β̂) =
1
B

B

∑
b=1

β̂∗
b − β̂, (26)

where β̂∗
b is the estimate of β using the b th bootstrap sample.

Therefore, a bias-corrected estimate is

β̂bc ≡ β̂ − Bias∗(β̂) = 2β̂ − 1
B

B

∑
b=1

β̂∗
b . (27)

This result applies in many cases; see MacKinnon and Smith (1998).
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The Linear Probability Model

The Linear Probability Model

Many applied works estimate the linear probability model, or LPM,

yi = Xiγ + ui. (28)

This model seems to make no sense, because E(yi |Xi) is a probability,
and probabilities must lie between 0 and 1.

But there is nothing in (28) to prevent Xiγ̂ < 0 or Xiγ̂ > 1. If any
element of Xi takes on an extreme value, this is likely to happen.

Thus the linear probability model is not a sensible way to model
conditional probabilities if regressors can take on extreme values.

Note that ui in (28) is heteroskedastic. We must use HCCME or CRVE.

Using (28) is probably not harmful if all regressors are dummy
variables. Suppose that Xi = [1 di] where di = 0 or 1. Then E(yi |Xi)
can take only two values.
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The Linear Probability Model

For the linear probability model,

E(yi | di = 0) = γ1 and E(yi | di = 1) = γ1 + γ2. (29)

The OLS estimate γ̂1 is just the average of the yi for di = 0, and the
OLS estimate γ̂1 + γ̂2 is just the average of the yi for di = 1.

For the probit model,

E(yi | di = 0) = Φ(−β1) and E(yi | di = 1) = Φ(β1 + β2). (30)

What we will probably find if we estimate both models is that

γ̂1
∼= Φ(−β̂1) and γ̂1 + γ̂2 ∼= Φ(β̂1 + β̂2). (31)

The parameter estimates will look different, but the fitted values will
probably be very similar.

This is true even with many dummies. But the LPM can behave badly
when there are continuous regressors that can take on extreme values.
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Cluster-Robust Inference

Cluster-Robust Inference

For logit and probit models with clustered disturbances, the CRVE is

V̂ar(β̂) =
(
X⊤Υ(β̂)X

)−1
(

G

∑
g=1

sg(β̂)s⊤g (β̂)

)(
X⊤Υ(β̂)X

)−1, (32)

where sg is the score vector for cluster g, of which a typical element is

sgj =
Ng

∑
i=1

(
ygi

F(Xgi β̂)
+

ygi − 1

F(−Xgi β̂)

)
f (Xgi β̂)Xgij, j = 1, . . . , k, (33)

and Υ(β) is an N × N diagonal matrix with typical diagonal element

Υi(β) ≡ f 2(Xi β)

F(Xi β)F(−Xi β)
. (34)

Without clustering, the covariance matrix would be
(
X′Υ(β̂)X

)−1.

Stata replaces X′Υ(β̂)X in (32) by the Hessian of the loglikelihood
function. This estimator is identical for logit but not for probit.
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Instrumental Variables

Instrumental Variables

One or more of the regressors in X may be endogenous. If so, probit
and logit estimates are inconsistent.

The control function approach is an easy way to correct for
endogeneity in this case.

Suppose that some columns of X, say Y, are endogenous, and that W is
a matrix of instruments.

Simply add MWY as additional regressors in a binary response model
to obtain consistent estimates of β; see Rivers and Vuong (1988).

We cannot just use reported variance matrix, because the control
functions are generated regressors.

We can either use analytical results or employ bootstrap methods.

For other methods, see Lewbel, Dong, and Yang (2012) and Lewbel
and Dong (2015).
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