Nonlinear Regression Models

Nonlinear Regression Models

A nonlinear regression model can be written as
yi = xi(B) +u;, w;~1D(0,0%), i=1,...,N. 1)

Here x;(B) is a nonlinear regression function. It depends (implicitly)
on explanatory variables and a k-vector B of parameters.

In vector terms,
y=x(B)+u, u~ID(0,0°1), )

where the i" element of x(B8) is x;(B).

A simple example of a nonlinear regression function is
Bo+ P + PaXs. ®)
This is nonlinear in the regressors and in 1 of the 4 parameters.
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Nonlinear Regression Models

If we combine the linear regression model y; = Z; + v; with the
AR(1) error process

v =po1+u, u~1D(0,07), |p| <1, (4)
we obtain the nonlinear regression model

Y =pYr1+Zif—pZi 1+ 5)
=x:(B,p) +u, u ~1D(0,02). (6)

This is linear in the regressors but nonlinear in the parameters.

A linear regression model can include all sorts of nonlinear functions
of the original regressors (squares, square roots, cross-products,
logarithms, inverses, exponentials, etc.). We can still use OLS.

But we cannot use OLS if x;(B) is nonlinear in one or more parameters.
The term “nonlinear regression” is usually reserved for such models.
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Nonlinear Least Squares

Nonlinear Least Squares

ETM discusses method-of-moments (MM) estimation in some detail,
but in practice nonlinear least squares, or NLS, is almost always used.

To obtain NLS estimates, we minimize

SSR(B) = (v —x(B)) " (y — x(B)). @)
Let X;;(B) denote the derivative of x;(f) with respect to ;.

Then we can let X;(B) denote a 1 x k vector and X(B) denote an N x k
matrix, each having typical element X;;(B).

These are the analogs of the vector X; and the matrix X for the linear
regression model. In that case, the regression function is X, so that
Xi(B) = X; and X(B) = X.

The first-order conditions to minimize (7) (omitting a factor of —2) are

X'(B)(y—x(B)) =o. ®)
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Nonlinear Least Squares

Multiplying by the appropriate power of N, these become

N7V2XT(B) (y —x(B)) =o. ©)

The factor of N~1/2 is here because we are going to derive the
asymptotic distribution of g from (9).

Since y — x(Bo) = u, a first-order Taylor expansion around By yields

NV2xTu— (L xTxo+ liA'( Yui || NY2(B - Bo) =0, (10)
oHu NO 0 Ni:1zﬁ0uz ,B ﬂO—/

where xy = x(Bo) and Xo = X(Bo).

Equation (10) involves the matrix with typical element

azxi
[Ai(ﬁ)]]‘l = aﬁjégl)

This is the second derivative of the regression function for the it
observation with respect to the j and /™" parameters.
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Nonlinear Least Squares
The leading-order terms in (10) are O, (1). They are
-1 .
N~YV2XJu and WXJX0 NY2(B — By). (12)

But the remaining term is O, (N~!/2) because

1 N
N Y Ai(Bo)ui (13)
i=1

is 1/N times a weighted average of the u;, which have mean 0.

Thus, asymptotically, we can ignore this third term. The moment
conditions (10) are asymptotically equivalent to

_ 1 N
NV2XGu— - Xg XoN'2(B — Bo) = 0. (14)

These look very much like the moment conditions for OLS.
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Nonlinear Least Squares

Solving these equations, we obtain
1
NY2(B — Bo) & ( XOTX) NY2X]u. (15)

The asymptotic normality of N*/2( — Bo) follows directly.

The asymptotic covariance matrix of (15) is
1 -1 1 1 -1
lim — X, Xo plim — X uu'X plim — X) Xo) . (16)
(EHOON 0 ) <NﬁooN 0 )<N~>00N 0 )
In the i.i.d. case,
1/2(p a 2 N R S
Var (N'*(B—Bo)) =0 (phm NXO XO) ) (17)
N—oo

In practice, of course, we ignore the factors of N and replace 0 by s>
and X, by X = X(B):

Var(B) = s2(X'X) L. (18)
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Nonlinear Least Squares

More generally, when E(uu') = Q, the asymptotic variance is
N R SR N L N
( phmﬁXO X0> (phm NXO QXO) ( pthXO X()) . (19

N—ro0 N—ro0 N—c0
and we actually use

Var(B) = (X'X) 1 XTOX(X'X) (20)
The middle matrix in (20) can be chosen in various ways, depending
on the assumptions we make.

@ When the middle matrix is ¥ ; 2 X'IT X;, perhaps with il; rescaled,
then (20) is an HCCME.

@ When the middle matrix is ZgG:1 X;ﬁg ﬁ;f( ¢, perhaps with i,
rescaled, then (20) is a CRVE.

@ The middle matrix can also be specified so as to make (20) a HAC
estimator. There are many such estimators.
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Computing NLS Estimates

Computing NLS Estimates

We wish to minimize a function Q(f) = SSR(B), where B is a k-vector
and Q(B) is assumed to be twice continuously differentiable.

Given any initial value of B, say B o), we can perform a second-order
Taylor expansion of Q() around B q).

This yields Q*(B), a quadratic approximation to Q(f):

Q*(B) = QB +8(0)(B—By) + %(ﬁ — B)) H)(B— B)), (21)

where g(B) is the gradient of Q(B) and H(p) is the Hessian.

The gradient has typical element 0Q()/0p;, and the Hessian has
typical element 3*Q(B) /9;0p;.

Let g and H ) denote g(B o)) and H(Bp)), respectively.
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Computing NLS Estimates

The first-order conditions for a minimum of Q*(p) are

80+ Ho)(B— B()) =0. (22)

Solving these yields

— -1
:3(1) = :3(0) - H(o)g(o)- (23)
This is the key equation of Newton’s Method. The idea is to apply it
repeatedly so as to obtain (,), B(3), and so on.

The figure shows an example for a two-dimensional function. Note
that we will need a stopping rule.

Newton’s Method can fail when the quadratic approximation to
Q(B o)) is not good enough. The second figure shows two examples of
failure for a one-dimensional function.

In theory, the quadratic approximation will always be very good when
B is close to the minimum.
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Computing NLS Estimates

Quasi-Newton methods attempt to retain the good qualities of
Newton’s Method while surmounting problems of non-convexity and
poor quadratic approximations.

They replace the Newton step by the more complicated formula

Bis+1) = Bis) — “(S)D(_s}g(s)' (24)

Here a(,) is a scalar which is determined at each step s, and
D(,) = D(Bs)) is a matrix which approximates H ) near the minimum
but is always positive definite.

Newton’s Method itself sets D) = H(;) and a(5) = 1.

Effective quasi-Newton methods often choose & s to minimize
Q'(w) = Q(B(s) —aD, g(s))- (25)

This is easy, because Q' («) is one-dimensional.
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Computing NLS Estimates

Any nonlinear optimization algorithm needs a stopping rule. One that
often works well is to stop when

g(TS)D(_Jg(S) < €. (26)

Here the tolerance € should be very small, say 1071 < ¢ < 1078.
The recipe for a quasi-Newton optimization algorithm is:
@ Pick the starting point Bg), and set s = 0.
@ Compute g(,) and D, and use them to determine the direction
vector D(_Sig(s).
© Find «(,), perhaps by solving a one-dimensional minimization
problem like (25). Then use (24) to determine B, 1).
© Decide whether B, 1) provides a sufficiently accurate approx-
imation to B. If so, stop. If not, return to step 2 with s = s +- 1.
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Computing NLS Estimates

Numerical optimization methods based on Newton’s Method
generally work well when Q(B) is globally convex.

@ For such a function, there can be at most one local minimum,
which is also the global minimum.

@ Optimization methods of this type can fail when there are
multiple minima. They generally converge to a local minimum,
but there is no guarantee that it is the global one.

The choice of the starting values B ) can be extremely important.

The usual way to guard against finding the wrong local minimum is to
minimize Q(B) several times, for several different starting values.

This is not feasible unless k is very small. For just 10 starting values for
each of k parameters, the total number of starting values is 10%,

Global optimization methods, such as simulated annealing, particle
swarm optimization, and ant colony optimization are designed to
find global optima when there are many local ones.
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Computing NLS Estimates

/8 B// 5/
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The Gauss-Newton Regression

The Gauss-Newton Regression

The Gauss-Newton regression or GNR is a linear approximation to a
nonlinear regression model. It is an example of an artificial regression.

A first-order Taylor series approximation to x(B) at B is

x(B) = x(B) + X(B)(B — B)- (27)

Substituting this into y = x(B) + u, moving the first term to the
left-hand side, and replacing B — B by b yields the GNR:

y — x(B) = X(B)b + residuals. (28)

It is simply a regression of y — x(), the residuals for B = B, on X(B),
the matrix of derivatives of x(B).

In practice, we have to replace B by some value of 8. Which one
depends on what we want to use the GNR for.
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The Gauss-Newton Regression

1. Gauss-Newton Optimization

Since H(B) = X'(B)X(B), and the latter is positive definite, it
makes sense to set D(B) = X'(B)X(B).

Furthermore, g(8) = X'(B)u.
We can use the GNR in a quasi-Newton procedure. If B = B,),

by = (X5 X)) XY —x()- (29)
Butif D) = X(TS)X(S) and g = X(TS) (y — x(5)), this is just
b(s) == D_lg(s). (30)

Thus b ) gives us a direction. Setting «(;) = 1 or choosing it by
line search gives us the Gauss-Newton method.
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The Gauss-Newton Regression

2. NLS Covariance Matrices
Suppose we evaluate the GNR at . It is

y — & = Xb + residuals. (31)
We should find that
b= (X'X)"'X'(y-%) =0 (32)

because X' (y — &) = X't = 0. If all the elements of b are not
very close to 0, the NLS routine is defective.

The standard covariance matrix of b is
s(X'X) (33)

where s? is the same as for the nonlinear regression because
X'it = 0. Regressing # on X does not change it.
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The Gauss-Newton Regression

We can also use the GNR to obtain hetero-robust, cluster-robust, or
HAC covariance matrices. For example, the cluster-robust one is

G )(N—l) STon—1 G 1. AT SToN—1
(X'X) X, dir, Xo | (X'X)7, (34)
(S0) (31 (£ mars,

where X, contains the rows of X for cluster g.

3. Testing Restrictions
We wish to test the restriction that B, = 0 in the model

y =x(B) +u=x(p1, B2) +u. (35)
It is easy to perform the test as an F test based on the GNR
y — ¥ = Xb + residuals, (36)
where ¥ = x(8) and X = X(B).
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The Gauss-Newton Regression

The GNR can also be written as
y—x= X1by + Xoby + residuals. (37)
The first-order conditions for B imply that
(y—%)'X; =0. (38)
This c~10es not mean that we can omit X; from (37). But it does mean
that M1(y — %) =y — &.
The FWL regression that corresponds to equation (37) is
M (y — %) =y — % = M1 X, b, + residuals. (39)
Therefore, the numerator of the F statistic is just 1/k, times
(v~ 1) Xa(X; M1 X2) 'X5 (3~ %), (40)

It can be shown that 1/s? times this is asymptotically x?(k») when the
disturbances are i.i.d.
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The Gauss-Newton Regression

We can also use the GNR (37) to compute a hetero-robust, or a
cluster-robust, or perhaps a HAC Wald statistic for b, = 0.

Of course, we can also compute Wald tests directly using 8, without
computing B or running a GNR.

For the i.i.d. case, we can use F tests based on SSR(B) and SSR().

3a. Testing for Serial Correlation
Consider the linear regression model with autoregressive errors.
In this case, Hy is the model

ye =XiB+u, u~1D(0,07%), (41)
and H; is the model
Yi = pys—1 + XiB — pX;_1B+us,  u ~ IID(0,0?). (42)
We wish to test the null hypothesis that p = 0.
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The Gauss-Newton Regression

The GNR that corresponds to (42) is

yr—pyi—1 — Xef+ pXi1

. (43)
= (X — pX;—1)b + bp(ys—1 — X;—1B) + residual,
where b corresponds to 8 and b, corresponds to p.
If (43) is evaluated at 8 = B and p = 0, it becomes
Ye — Xtﬁ = Xib+bp (Y1 — Xt,lﬁ) + residual. (44)

If we denote the OLS residuals from (41) by ii;, the GNR (43) takes on
the very simple form

iiy = Xib + bpii; 1 + residual. (45)
This is just a linear regression of the OLS residuals i on X and the

residuals lagged once.

A suitable test statistic is the ¢ statistic for the artificial parameter b, in
(45) to equal 0.
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The Gauss-Newton Regression

We can replace the regressand in (45) by y;. By the FWL Theorem, the
t statistic is numerically identical.

This procedure, due to Durbin (1970), can easily be generalized to
@ nonlinear regression models;
e tests for higher-order autoregressive errors;
e tests for moving-average errors.

For example, to test for AR(2) errors in a nonlinear regression model,
we would run the test regression

i, = X;b+ by, fit—1 + bp, ;2 + residual, (46)
where X; is the vector of derivatives of x;(8) evaluated at the NLS

estimates B.

Near the null hypothesis, an MA(p) process looks like an AR(p)
process; see Godfrey (1978a,b). So tests against MA(p) and AR(p)
errors are the same.
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The Gauss-Newton Regression

3b. Optimization Tricks

For purposes of numerical optimization, is often convenient to
divide 0 into two subvectors.

Perhaps we can concentrate the objective function by writing

min SSR(Bl, 62) 1’1’(})11’1 SSR(Bl, 92(61)), (47)
1

01,02

where 6, (61) minimizes SSR(61, 0;) with respect to 6,
conditional on 6.

This is true for (42), where p and B play the roles of 8; and 0,. If
we ignore the first observation, we have

T

SSR(p, B) = Y _(yt — pyi—1 — XsB +pX;_1B)>.  (48)
=2
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The Gauss-Newton Regression

Conditional on p, the least squares estimate of B is

B(o) = (X'(0)X(p)) 'X"(0)y(p), (49)
where the t™ rows of X(p) and y(p) are
X —pX;1 and y,—py,, fort=2,...,T. (50)

We can use any sort of one-dimensional search routine to find g that
minimizes SSR(p) = SSR(p, B(p)). This gives us B as a byproduct.

But the covariance matrix of § from the regression of y(g) on X(p) is,
in general, wrong. It is correct only if everything in X is exogenous.

Instead, we need to run the GNR (43) evaluated at ¢ and f:
y—py_ —XB+pX_18=X(p)b+by(y_, — X_1B) + residuals. (51)
The covariance matrix of b and b, is Var(p, B).
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The Gauss-Newton Regression

Another possibility is to employ sequential minimization.
@ Choose 6(20) somehow, and set s = 0.
@ Minimize SSR(61, 0;) w.r.t. 8; conditional on (-)gs) to find Bgsﬂ).
@ Minimize SSR(61, 0;) w.r.t. 8; conditional on Bgsﬂ) to find Bésﬂ).
@ Check to see whether we are close enough to 6.

@ If not, return to #2 and increment s by 1.
If the algorithm converges (it may not!), we have found [61,8,]. Then
use the GNR (or another artificial regression, or just matrix algebra) to
obtain Var(é1, 92). Why use an artificial regression?

Since economists very rarely estimate models that are nonlinear in
every parameter, this sort of procedure is often very useful.

Minimization procedures that concentrate the objective function may
be able to handle more severe nonlinearities than ones that use
sequential minimization, at least when 6, is low-dimensional.
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Bootstrap Inference in Nonlinear Regression Models

Bootstrap Inference in Nonlinear Regression Models

Finite-sample inference in nonlinear regression models, and other
nonlinear models, can be problematic.

@ In most cases, B is biased, sometimes severely.

o B — Bo may not be close to being normally distributed with
covariance matrix (X7 Xo)~ X7 QXo(X] Xo)~ L

e X'X may provide a poor approximation to X, Xp.
o X'OX may provide a poor approximation to Xg QX.
o There is likely to be correlation between f and Var(B).

Thus hypothesis tests based on asymptotic theory may over-reject (or,
much less commonly, under-reject) severely.

Similarly, confidence sets may under-cover (or over-cover).

Bootstrap methods usually provide more reliable inferences.
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Bootstrap Inference in Nonlinear Regression Models

But bootstrapping can be expensive when a model is nonlinear.

For hypothesis tests, we can often get away with a small value of B by
using a trick proposed in Davidson and MacKinnon (ER, 2000).

Q Start with B = 99 and compute p*.
@ Stop if p* is significantly larger or smaller than «, or if B > Bpax.

@ If necessary, add more bootstrap samples, taking B to, say, 2B + 1.
Compute p* again, and go to #2.

Eventually, we either stop with B > Bnax and p* very close to «, or
with p* clearly on one side of a.

When testing whether p* = a in step #2, use a very small level for the
test (e.g., .0001).

It is not clear whether this trick could be adapted to work with
bootstrap confidence intervals.

Another trick is to stop the nonlinear estimation early for the bootstrap
samples; see Davidson and MacKinnon (IER, 1999).
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Bootstrap Inference in Nonlinear Regression Models

Estimation of nonlinear models using bootstrap data has an advantage
over estimation using real data: The model we are estimating actually
generated the data, and we can start at the “true” value of .

But nonlinear estimation can fail for some bootstrap samples.

@ Perhaps X'(B)X(B) is numerically singular for some value of 8
that the Gauss-Newton algorithm encounters.

o If this happens, the algorithm can get stuck in a space of
dimension lower than k and never converge.

@ Well-written numerical optimization programs check for this sort
of thing, but poorly-written ones can either die or iterate forever.

@ We may have to throw out bootstrap samples where this happens.
e This is not a big deal if it happens in 2 out of 999 cases.

o Butitis a big deal if it happens in 83 out of 999! If the problem
cannot be corrected, it should certainly be reported.
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