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Standard asymptotic theory can provide a very poor approximation to
the finite-sample properties of IV estimates.

Parameter estimates may be strongly biased, with distributions
that are far from normal.
Reported standard errors may be much too small.
In consequence of these two features of IV estimation,

Test statistics may frequently reject hypotheses that are true.
Confidence intervals may severely under-cover.

These problems are most serious when the instruments are
“weak.” They get worse as the number of instruments increases.

There is an enormous literature on this subject. See Isaiah Andrews,
James H. Stock, and Liyang Sun, “Weak instruments in instrumental
variables regression: Theory and practice,” Annual Review of Economics,
11, 2019, 727–753.
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Consider a two-equation system with one endogenous r.h.s. variable

y1 = βy2 + Zγ + u1, (1)
y2 = Zπ1 + W2π2 + u2. (2)

Here (1) is a structural equation and (2) is a reduced-form equation.

In (1) and (2), W = [Z W2] has l columns, and Z has k− 1 columns, so
that there are l− k over-identifying restrictions.

We could also write (1) as y1 = Xβ + u1, where X = [y2 Z] and
β = [β γ⊤]⊤. The coefficient we really care about is β.

The entire unrestricted reduced form consists of two equations:

y1 = Zπ11 + W2π12 + v1 (3)
y2 = Zπ21 + W2π22 + v2 (4)

Here (4) is just (2) with different notation, and (3) is the equivalent for
y1; perhaps confusingly, v2 in (4) is u2 in (2).
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We can combine (3) and (4) as

Y = W Π + V. (5)

However, the only part of this that we care about is (2), or (4).

The reduced-form equation (2) is used to obtain the fitted values

ŷ2 = PWy2 = Zπ̂1 + W2π̂2, (6)

which are then used to compute the IV (or 2SLS) estimates[
β̂IV
γ̂IV

]
= (X⊤PWX)−1X⊤PW y1. (7)

The formula for β̂IV by itself is

β̂IV = (y⊤2 PW MZPW y2)
−1y⊤2 PW MZPW y1. (8)

Many theoretical papers assume that X = y2, in which case

β̂IV = (y⊤2 PW y2)
−1y⊤2 PW y1. (9)
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In this special case, assuming i.i.d. disturbances, there are l− 1
over-identifying restrictions, and

Var(β̂IV) = σ2(y⊤2 PW y2)
−1. (10)

Setting X = y2 gives the impression that what matters for Var(β̂) (and
for finite-sample properties) is the ability of W to explain y2.

But what actually matters is the ability of MZW2 to explain MZy2. This
is the additional explanatory power of W2 in the regression

y2 = Zπ1 + W2π2 + v2. (11)

Because S(Z) ⊂ S(W), PW MZ = PW − PWPZ = PW − PZ.

Thus we can rewrite (8) as

β̂IV =
(
y⊤2 (PW − PZ)y2

)−1y⊤2 (PW − PZ)y1. (12)

To obtain a general expression for Var(β̂) in the i.i.d. case, we just need
to replace PW in (10) by PW − PZ.
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It is surprisingly common for there to be only one endogenous
regressor and only one instrument.

In this case, as we saw previously, the IV estimator β̂IV is just
y⊤1 MZw/y⊤2 MZw, the ratio of γ̂1 to γ̂2 from the regressions

y1 = γ1w + Zπ1 + u1, (13)
y2 = γ2w + Zπ2 + u2. (14)

Since y⊤2 MZw is in the denominator and can be of either sign, this ratio
can be extremely large.

Thus it should not be surprising that, in this case, β̂IV has no moments.

In general, the GIV estimator has at most l− k moments, where l− k is
the number of over-identifying restrictions.

Asymptotic theory may work poorly for estimators with no or few
moments, and bootstrap methods must be used with care.

Methods based on quantiles of bootstrap distributions are likely to be
much more reliable than ones based on moments.
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For the model (1) and (2), finite-sample properties depend on
1 the number of over-identifying restrictions, which is l− k, or,

equivalently, the number of instruments, which is l− k + 1;
2 the correlation ρ between the elements of u1 and u2;
3 the strength (or weakness) of the instruments.

A measure of how strong the instruments are is the concentration
parameter,

Λ =
1
σ2

2
π⊤2 W⊤

2 MZW2π2. (15)

This is the variation in W2π2 that cannot be explained by Z, divided by
the variance of the ui2. It is a form of noncentrality parameter, or NCP.

Weak-instrument asymptotics assumes that the concentration
parameter Λ stays constant as N → ∞.
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This means that the elements of π2 are assumed to be O(N−1/2).

In contrast, under conventional (strong-instrument) asymptotics, π2 is
fixed and Λ = O(N).

There is also an extensive literature on many weak instruments in
which l→ ∞ as N → ∞.

The literature on IV estimation exemplifies the importance of the
asymptotic construction that we choose to use.

We can estimate (15) by running the reduced-form regression (11).
When the F statistic for π2 = 0 in this equation is large, it is
probably reasonable to rely on IV estimates and standard errors.
When this first-stage F statistic is small, it is dangerous to do so.

Stock and Yogo (2005) suggest computing this F statistic.

They actually allow for m ≥ 1 endogenous regressors, so there are m
reduced-form regressions. Test statistic is more complicated if m > 1.
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S & Y claim that it is safe to rely on asymptotic theory for β̂IV when
this F statistic is large (say, F > 10) and unsafe when F is small.

They provide several tables, and the required value of F can be much
larger than 10. But they are all based on worst-case assumptions.

When l− k is large (many over-identifying restrictions), W2 may need
a lot of explanatory power to make F large enough.

Consider again the simple case in which the only regressor in the
structural equation is y2.

In this case, the IV estimator is

β̂IV =
y⊤1 PWy2

y⊤2 PWy2
, (16)

and its estimated variance, under the i.i.d. assumption, is

V̂ar(β̂IV) = σ̂2(y⊤2 PW y2)
−1. (17)
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If we replace y1 by βy2 + u1 and y2 by Wπ + u2, we find that

β̂IV =
(β(Wπ + u2) + u1)

⊤PW(Wπ + u2)

(Wπ + u2)⊤PW(Wπ + u2)

=
βπ⊤W⊤Wπ + 2βu⊤2 Wπ + βu⊤2 PW u2 + u⊤1 Wπ + u⊤1 PW u2

π⊤W⊤Wπ + 2π⊤W⊤u2 + u⊤2 PW u2
.

Under conventional asymptotics, the quadratic form π⊤W⊤Wπ is
Op(N), the terms involving one of u1 or u2 are Op(N1/2), and the terms
with PW in the middle are Op(1).

Thus β̂IV
a
= β0, because the factors of π⊤W⊤Wπ cancel out.

Under weak-instrument asymptotics, however, every term is Op(1).

Conventional asymptotics provides a good guide if π⊤W⊤Wπ is large
relative to the other terms.

Hence the importance of the concentration parameter Λ. The
first-stage F statistic is an (inconsistent) estimate of Λ/(l− k).
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If we subtract β from β̂IV and rescale everything, we obtain

N1/2(β̂IV − β) =
N−1/2 u⊤1 Wπ + N−1/2 u⊤1 PW u2

N−1(π⊤W⊤Wπ + 2π⊤W⊤u2 + u⊤2 PW u2)
. (18)

Under conventional asymptotics, only the first terms in the numerator
and denominator matter asymptotically. But under weak-instrument
asymptotics, they all do.

Thus, under conventional asymptotics, N1/2(β̂IV − β) asymptotically
has mean zero and variance

Var
(
N1/2(β̂IV − β)

) a
= σ2(N−1π⊤W⊤Wπ)−1. (19)

Compare this with V̂ar(βIV) = σ̂2(y⊤2 PW y2)
−1, which equals

σ̂2(π̂⊤W⊤Wπ̂ + 2π̂⊤W⊤û2 + û⊤2 PW û2)
−1. (20)

For this to work well, we again need Λ to be large. If not, terms other
than π̂⊤W⊤Wπ̂ will be important.
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Figure 1 shows CDFs (from simulations) of OLS estimator and three IV
estimators in a simple case. The three IV estimators, IV0, IV3, and IV6,
have l− k equal to 0, 3, and 6, respectively.

We are estimating the slope parameter from an equation with one
endogenous regressor and a constant term; its true value is 1. The
sample size is only 25 so as to make finite-sample biases very apparent.

OLS is severely biased but not very dispersed; IV0 has
approximately the right median but is extremely dispersed.
CDFs for IV3 and IV6 mostly lie between those for OLS and IV0
and have much thinner tails than the latter.

The effect of increasing the sample size is shown in Figure 2, which
shows the distribution of IV6 for N = 25, N = 100, and N = 500.

As N increases, the variance and bias of the estimator both decrease, as
expected. However, even for N = 500, bias is noticeable. About 58% of
the estimates are greater than the true value of 1.
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1. Distributions of OLS and IV estimates, N = 25
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Since the Stock-Yogo rule of thumb ignores ρ, it can be very misleading
when ρ is small.

The Stock-Yogo rule of thumb is for i.i.d. disturbances. It does not
work with heteroskedasticity or clustering.

Olea and Pflueger (JBES, 2013) generalizes Stock and Yogo (2005) to
these cases. Their procedure replaces the first-stage F statistic with
something more complicated.

Unless the Olea-Pflueger statistic is quite large, reliable inference can
be challenging. Results of Young (2022) suggest that it may need to be
even larger than their paper claims.

Interest often focuses on t-tests and/or confidence intervals instead of
β̂IV itself. Rejection frequencies for some IV t-tests under the null
hypothesis are shown in Figure 3.

There is extreme dependence on both Λ and ρ. Tests actually
under-reject for small Λ when ρ is small.
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The vertical axis shows rejection frequencies for asymptotic t tests. The
numbers are taken from Davidson and MacKinnon (JBES, 2010).

N = 400 and l− k = 11. There are 100,000 replications.
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Lee, McCrary, Moreiro, and Porter, “Valid t-ratio inference for IV,”
AER, 2022, 3260–3290 proposes procedure based on Stock-Yogo theory
for the exactly identified case. Key ingredients are

t̂ =
β̂− β0

ŝe(β̂)
and F̂ =

π̂2

V̂(π̂)
. (21)

Here t̂ is the t-statistic on β̂, the IV estimate of β in the structural
equation, and F̂ is the squared t-statistic for π = 0 in the reduced form.

Both ŝe(β̂) and V̂(π̂) may be hetero-robust or cluster-robust.

The tF procedure of LMMP rejects the null that β = β0 whenever t̂
exceeds a critical value cα(F) that depends on α and F̂. Values of cα(F)
differ greatly for α = .05 and α = .01.

For F̂ = 4.00 and α = .05, cα(F) = 18.66. For F̂ = 10, cα(F) = 3.43.

For F̂ = 6.67 and α = .01, cα(F) = 91.10. For F̂ = 10, cα(F) = 8.86.

These critical values are insanely conservative when ρ is small.
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Alwyn Young (2022), “Consistency without inference: Instrumental
variables in practical application,” European Economic Review, 147.

It studies 1309 IV regressions in 30 published papers with
heteroskedasticity and or clustering.

First-stage F statistics greater than 10 arise frequently by chance,
especially for reduced-form regressions with high-leverage
observations or clusters (the HL sample).
Although IV estimates often differ substantially from OLS ones,
they rarely do so significantly, and never for the HL sample.
For the HL sample, bootstrap DWH tests rarely reject the null that
OLS estimates are consistent.
For the HL sample, IV t-tests are unreliable and power is low.
Bootstrap inference (both pairs and wild) and jackknife inference
are much more reliable than asymptotic inference.
Bootstrap P values based on coefficients often outperform ones
based on t-statistics.
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The Anderson-Rubin Test

The Anderson-Rubin test (A & R, 1949) is sometimes advocated for
testing hypotheses about β. The test statistic is

AR(β0) =
N− l

l− k + 1
(y1 − β0y2)

⊤P1(y1 − β0y2)

(y1 − β0y2)
⊤MW(y1 − β0y2)

, (22)

where P1 ≡ MZ −MW = PW − PZ.

Under classical assumptions, with β = β0, AR(β0) follows the
F(l− k + 1, N− l) distribution. After all, it is just an F test.

The denominator of AR(β0), times 1/(N− l), is the SSR from a
regression of y1 − β0y2 on W.

It is a valid estimator of σ2
1 , since the columns of W that do not belong

to S(Z) should have no real explanatory power.
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The AR test has attracted a good deal of attention because it has good
finite-sample properties even when the instruments are weak.

But the AR test is really testing two different restrictions:
1 that β = β0;
2 that the instruments, W2, that is, the regressors in W but not in Z,

have no explanatory power.
The numerator of the AR statistic can be rewritten as(

(β̂IV − β0)y2
)⊤P1

(
(β̂IV − β0)y2

)
+ (y1 − β̂IV y2)

⊤P1(y1 − β̂IV y2). (23)

The first term here is testing whether β = β0.

The second term is the numerator of the Sargan statistic, since

(MZ −MW)(y1 − β̂IV y2) = PW(y1 − β̂IV y2), (24)

because Z and W are orthogonal to the IV residuals.
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Thus, when l− k > 0, large values of the Sargan statistic are associated
with large values of the AR statistic.

The AR test has good finite-sample properties under the null, even
with weak instruments, but it can be hard to interpret when l− k > 0.

It tends to lack power against the alternative that β ̸= β0,
especially when l− k is large.
When it does reject the null, with l− k > 0, it may well do so
because the instruments are invalid and not because β ̸= β0.

Never invert an AR test (with l− k > 0) to obtain a confidence interval
for β! It is fine to do so when there are no over-identifying restrictions.

With weak instruments, the interval may cover the entire real line,
or it may cover most of the real line but with a hole in the middle.
When the Sargan statistic is large, the interval may be very short,
or even empty.
See Davidson & MacKinnon (2010, 2014) and Müller and Norets
(2016).
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A Bootstrap Method for IV Regression

A Bootstrap Method for IV Regression

Using the bootstrap to make inferences about β requires a bootstrap
DGP for equations (1) and (2). A good one was proposed by Davidson
and MacKinnon (JBES, 2010).

We can rewrite these two equations as

y1 = βy2 + Zγ + u1, (25)
y2 = Wπ + u2. (26)

Unless we are going to use the pairs bootstrap, which works poorly,
we need to specify β, γ, π, and how to generate the u∗1i and u∗2i.

As usual, we should impose the restriction(s) we want to test.

This means setting β = β0. Then γ = γ̃ is obtained by an OLS
regression of y1 − β0y2 on Z.

This regression also yields residuals ũ1, which we will need.
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The obvious way to estimate π is to regress y2 on W. But this yields
inefficient estimates, and the resulting bootstrap works poorly.

Instead, we regress y2 on W and ũ1. This is asymptotically equivalent
to estimating (25) and (26) by FIML (which is really LIML in this case).

This regression yields π̃ and ũ2 ≡ y2 −Wπ̃. Note that ũ2 is not the
vector of residuals from the regression used to obtain π̃.

The DGP for the wild restricted efficient, or WRE, bootstrap is

y∗1i = β0y∗2i + Ziγ̃ + ũ1i v∗i (27)
y∗2i = Wiπ̃ + ũ2i v∗i , (28)

where v∗i follows the Rademacher distribution. Note same v∗i !

We may be able to improve finite-sample performance slightly by
rescaling the ũ1i and the ũ2i.

If there is clustering as well as heteroskedasticity, then the bootstrap
DGP must generate the data cluster by cluster.
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The WCRE bootstrap DGP is

y∗1g = β0 y∗2g + Ziγ̃ + ũ1g v∗g (29)

y∗2g = Wgπ̃ + ũ2g v∗g . (30)

As with WCR bootstrap, same value of the auxiliary random variable,
v∗g , is used for both equations and every observation in cluster g.

Important features of W(C)RE bootstrap:
1 Reduced form equation (26) is estimated efficiently.
2 Structural equation (25) uses restricted (OLS) estimates instead of

unrestricted (IV) ones.
3 The same v∗i multiplies (possibly transformed) residuals for both

equations. Bootstrap disturbances retain the correlation between
structural and reduced-form residuals.

These procedures are implemented efficiently in boottest.

November 26, 2024 23 / 24



A Bootstrap Method for IV Regression

Of course, if we are allowing for heteroskedasticity or clustering, we
need to use hetero-robust or cluster-robust standard errors.

The usual CRVE for β̂ and γ̂ jointly is

(X⊤PWX)−1

(
G

∑
g=1

(PWX)⊤g ûgû⊤g (PWX)g

)
(X⊤PWX)−1. (31)

If we just focus on the CRVE for β̂, it is

∑G
g=1
(
(PW − PZ)y2

)⊤
g ûgû⊤g

(
(PW − PZ)y2

)
g(

y⊤2 (PW − PZ)y2
)2 . (32)

The HCCME is a special case with G = N.
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