
Instrumental Variables

Instrumental Variables

When any of the regressors is correlated with the disturbances, OLS
estimates are biased and inconsistent.

Most common solution is instrumental variables, or IV, estimation.

Suppose there is just one column of X, say x, that is correlated with u.

Let W denote a matrix of instruments with the same dimension as X,
where x has been replaced by an instrument w that is assumed to be
uncorrelated with the disturbances but correlated with x.

The remaining columns of W and X are identical.

The simple IV estimator is

β̂IV = (W⊤X)−1W⊤y. (1)

This is consistent whenever plim N−1W⊤u = 0.
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Errors in Variables

Errors in Variables

Correlations between regressors and disturbances arise for two main
reasons. The first is that regressors may be measured with error.

Consider the simple linear regression model

y◦i = β1 + β2x◦i + u◦
i , u◦

i ∼ IID(0, σ2), (2)

where the variables x◦i and y◦i are not actually observed. These are
sometimes called latent variables. Instead, we observe

xi = x◦i + v1i, and yi = y◦i + v2i. (3)

Here v1i and v2i are measurement errors which are assumed (not
always realistically) to be IID with variances ω2

1 and ω2
2, respectively,

and to be independent of x◦i , y◦i , and u◦
i .

From (3), we see that x◦i = xi − v1i and y◦i = yi − v2i.
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Errors in Variables

In terms of observables, (2) is replaced by

yi = β1 + β2(xi − v1i) + u◦
i + v2i (4)

= β1 + β2xi + u◦
i + v2i − β2v1i (5)

= β1 + β2xi + ui, (6)

where ui = u◦
i + v2i − β2v1t. Thus

Var(ui) = σ2 + ω2
2 + β2

2ω2
1 > σ2. (7)

Because xi = x◦i + v1i, and ui depends on v1i, ui must be correlated with
xi whenever β2 ̸= 0 and ω2

1 > 0.

Since E(ui | xi) = E(ui | v1i) = −β2v1i,

Cov(xi, ui) = E(xiui) = E
(
xi E(ui | xi)

)
(8)

= −E
(
(x◦i + v1i)β2v1i

)
= −β2 ω2

1. (9)

The correlation between xi and ui has sign opposite to that of β2.
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Errors in Variables

Because of the negative correlation between xi and ui, the OLS estimate
β̂2 is biased towards zero.

β̂1 is also biased, as are any other coefficents.
Friedman’s permanent income hypothesis is essentially a
measurement error story. Consumption depends on permanent
income, but we only observe current income.
Regressing consumption on current income leads to an estimated
marginal propensity to consume that is much too small.

If we knew how large the measurement errors were, we could remove
the bias in β̂2.

Of course, this will require the assumption that they are uncorrelated
with the x◦i , which we made in (3).

We can also obtain consistent estimates if we can find an instrument wi
that is correlated with x◦i but uncorrelated with v1i.
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Simultaneous Equations

Simultaneous Equations

Suppose that qi is quantity and pi is price, both of which might be in
logarithms. A linear (or loglinear) model of demand and supply is

qi = γd pi + Xd
i βd + ud

i (10)
qi = γs pi + Xs

i βs + us
i , (11)

where (10) is the demand function and (11) is the supply function.
These are the two structural equations of the system.

Here Xd
i and Xs

i are row vectors of observations on exogenous or
predetermined variables.

Equations (10) and (11) are two linear equations that jointly determine
pi and qi. They constitute a linear simultaneous equations model.

As written, quantity depends on price in both equations. But either or
both equations could be rewritten so that price depends on quantity.
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Simultaneous Equations

We can rewrite the two equations in matrix notation as[
1 −γd
1 −γs

][
qi
pi

]
=

[
Xd

i βd
Xs

i βs

]
+

[
ud

i
us

i

]
. (12)

Provided γd ̸= γs, a solution exists. It is[
qi
pi

]
=

[
1 −γd
1 −γs

]−1
([

Xd
i βd

Xs
i βs

]
+

[
ud

i
us

i

])
. (13)

This is the restricted reduced form of the system.

Here pi and qi depend on both ud
i and us

i , and on every exogenous or
predetermined variable in Xd

i and/or Xs
i .

Therefore pi, which appears on the r.h.s. of both (10) and (11), must be
correlated with the disturbances in both of those equations.

This is also true of qi. Rewriting one or both equations will not
eliminate the problem.
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Instrumental Variables (IV) Estimators

We will focus on the linear regression model

y = Xβ = βy2 + Zγ + u, E(uu⊤) = σ2I, (14)

where X is N × k, and Z is N × (k − 1). Here every column of Z is
exogenous or predetermined, but y2 is not predetermined.

Let W be an N × k matrix consisting of Z plus one other column, say
w2, that is predetermined and therefore a valid instrument.

Since E(W⊤u) = 0, we can employ the moment conditions

W⊤(y − Xβ) = 0. (15)

These lead to the simple IV estimator

β̂IV = (W⊤X)−1W⊤y. (16)
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The simple IV estimator is consistent whenever

plim
N→∞

1
N

W⊤X = SW⊤X and plim
N→∞

1
N

W⊤u = 0, (17)

where SW⊤X is deterministic and nonsingular. Just replace y in (16) by
Xβ0 + u, divide both factors by N, and take plims.

The asymptotic covariance matrix of β̂IV is

Var
(
N1/2(β̂IV − β0)

)
= σ2(SW⊤X

)−1SW⊤W

(
SW⊤X

)−1, (18)

where SW⊤W = plimN→∞ N−1W⊤W. In practice, we use

V̂ar(β̂IV) = σ̂2(X⊤PWX)−1, (19)

where
σ̂2 =

1
N
(y − Xβ̂IV)

⊤(y − Xβ̂IV). (20)
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Of course, if we assumed that the ui are heteroskedastic rather than
i.i.d., (19) would be replaced by

V̂arh(β̂IV) = (W⊤X)−1

(
N

∑
i=1

û2
i W⊤

i W i

)
(W⊤X)−1. (21)

We could also allow for clustering. Since the i.i.d. assumption leads to
some interesting results on efficiency, we will maintain it for now.

The simple IV estimator β̂IV can also be written as (X⊤PWX)−1X⊤PW y.

Because X⊤W is square, (X⊤PWX)−1 = (W⊤X)−1W⊤W(X⊤W)−1. Thus

β̂IV = (X⊤PWX)−1X⊤PWy (22)

= (W⊤X)−1W⊤W(X⊤W)−1X⊤W(W⊤W)−1W⊤y (23)

= (W⊤X)−1W⊤y (24)

The first expression is also the generalized IV estimator, or GIVE.
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Instrumental Variables (IV) Estimators

In many cases, we have l > k instruments. The GIVE finds a linear
combination of them that is optimal.

Suppose that

X = X̄ + V, where X̄i = E(Xi |Ωi). (25)

Then W should, ideally, be proportional to X̄. In this case

plim
N→∞

1
N

X⊤PWX = plim
N→∞

1
N

X̄⊤PWX̄ = plim
N→∞

1
N

X̄⊤X̄. (26)

Of course, if Var(V) is large, X̄⊤X̄ may be much smaller than X⊤X, and
the IV estimator may be much less efficient than the OLS estimator.

The optimal instruments are given by X̄, which we do not observe.

But if we redefine W as an N × l matrix, we can use PWX to estimate X̄:

β̂IV = (X⊤PWX)−1X⊤PW y. [GIVE again] (27)
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Instrumental Variables (IV) Estimators

Standard asymptotic results for GIVE are similar to those for simple
IV. SW⊤X is now l × k instead of k × k, and SW⊤W is now l × l. The
former should have rank k, the latter rank l.

It is still essential that
plim
N→∞

1
N

W⊤u = 0. (28)

Including even one invalid instrument in W will destroy consistency.

The most efficient possible GIV estimator uses X̄ as the matrix of
instruments. It is less efficient than OLS because

plim
N→∞

1
N

X⊤X = plim
N→∞

1
N

X̄⊤X̄ + plim
N→∞

1
N

V⊤V. (29)

This follows from (25). Terms involving V⊤X̄ vanish.

Adding additional (valid) instruments to W brings X⊤PW X closer to
X̄⊤X̄ and thus increases asymptotic efficiency. But X⊤PW X may still be
much “smaller” than X⊤X, so that β̂IV is much less efficient than β̂OLS.
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Instrumental Variables (IV) Estimators

The generalized IV estimator can be obtained by minimizing the IV
criterion function

Q(β, y) = (y − Xβ)⊤PW(y − Xβ). (30)

The resulting moment conditions are

X⊤PW(y − Xβ) = 0. (31)

Intuitively, we only minimize the part of the residuals that can be
explained by W.

In the i.i.d. case, β̂IV will be asymptotically normal if it is root-N
consistent and

N−1/2X⊤PW u a∼ N
(

0, σ2
0 plim

N→∞

1
N

X⊤PWX
)

. (32)

With heteroskedasticity and/or clustering, the covariance matrix of
N−1/2X⊤PW u will be more complicated.
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Two-Stage Least Squares

Two-Stage Least Squares

The (generalized) IV estimator is also commonly known as the
two-stage least-squares, or 2SLS, estimator.

It can be calculated using OLS regressions in two stages.

In the first stage, each column xi, i = 1, . . . , k, of X is regressed on W, if
necessary. If xi is a valid instrument, it is already one of the columns
of W, so it serves as its own instrument without a regression.

The second-stage regression is

y = PWXβ + residuals. (33)

Because PW is idempotent, the OLS estimate of β from this
second-stage regression is

β̂ 2sls = (X⊤PWX)−1X⊤PW y, (34)

which is identical to β̂IV.
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Two-Stage Least Squares

Estimating the Variance of the Disturbances
If 2SLS is used, it is tricky to estimate the standard error of the
regression and the covariance matrix of the parameter estimates.
The OLS estimate of σ2 from (33) is

s2 =
∥y − PWXβ̂IV∥2

N − k
. (35)

In contrast, the estimate that was used in the estimated IV
covariance matrix is

σ̂2 =
∥y − Xβ̂IV∥2

N
. (36)

These two estimates of σ2 are not asymptotically equivalent, and
s2 is not consistent.
Residuals from (33) do not tend to u as N → ∞.
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Two-Stage Least Squares

This happens because the regressors PWX are not the true explanatory
variables X.

We divided by N in (36) because the correct IV residuals, y − Xβ̂IV, are
not necessarily too small.

Cluster-Robust Inference
When the disturbances display intra-cluster correlation, the
scores almost always will too.
We need to use the CRVE

(X⊤PWX)−1

(
G

∑
g=1

[X⊤PW ]g ûg û⊤
g [PWX]g

)
(X⊤PWX)−1, (37)

where [PWX]g is the Ng × k submatrix of PWX for cluster g, and
ûg is the corresponding Ng × 1 subvector of û.
Heteroskedasticity-robust variance estimator is a special case of
(37) with G = N.
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Tests of Over-Identifying Restrictions

Tests of Over-Identifying Restrictions

A model with k regressors and l instruments implicitly incorporates
l − k over-identifying restrictions. We cannot solve l equations
uniquely for k unknowns, so we only solve k moment conditions.

We can always write

S(W) = S(PWX, W∗), (38)

where W∗ has l − k columns. Recall that

PWX = W(W⊤W)−1W⊤X (39)

is just a linear combination of the columns of W. Luckily, we don’t
have to decide which columns of W belong to W∗.

Although we cannot test the moment conditions that E(X⊤PW u) = 0,
we can and should test the moment conditions that W∗⊤u = 0.
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Tests of Over-Identifying Restrictions

In the i.i.d. case, we can test restrictions on β by evaluating the IV
criterion function (30) at the restricted and unrestricted estimates to
get Q(β̃) and Q(β̂). Then

Q(β̃)− Q(β̂)

σ2
IV

a∼ χ2(r). (40)

Now consider the IV regression models

y = Xβ + u, u ∼ IID(0, σ2I), E(W⊤u) = 0, and (41)

y = Xβ + W∗γ + u, u ∼ IID(0, σ2I), E(W⊤u) = 0. (42)

Call the estimates from (41) β̂IV and the ones from (42) β̂U. For (41),

Q(β̂IV) = ûIV
⊤PW ûIV. (43)

For (42), by contrast, Q(β̂U) = û⊤
UPW ûU = 0. This holds because

S(W) = S(PWX, W∗), so that ûU is orthogonal to W.
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Tests of Over-Identifying Restrictions

Thus we don’t need to estimate the model (42) at all. We only used it
to justify a particular test statistic for over-identifying restrictions.

In this case, the test statistic (40) reduces to

Q(β̂IV)

σ̂2
IV

=
ûIV

⊤PW ûIV

σ̂2
IV

a
=

u⊤(PW − PPW X)u
σ2 , (44)

because ûIV = u − X(X⊤PW X)−1X⊤PW u. The numerator is a quadratic
form in a matrix that projects onto a space of dimension l − k.

The denominator ensures that, asymptotically, the elements of u/σ
have variance 1. Thus (44) is asymptotically χ2(l − k).

The Sargan statistic to test for over-identifying restrictions is the
middle expression in (44).

It is simply the ESS from a regression of ûIV on W, divided by σ̂2
IV.

This works because û⊤
IV PW ûIV = u⊤(PW − PPW X)u; see (44).
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Tests of Over-Identifying Restrictions

The model (42) represents two conceptually different alternatives. The
“true” parameter vector γ could be nonzero in two situations.

1 The model (14) is correctly specified, but some of the instruments
are asymptotically correlated with the disturbances and are
therefore not valid instruments.

2 The model (14) is misspecified, and some of the instruments (or,
possibly, other variables that are correlated with them) have
incorrectly been omitted from the regression function.

In either case, the over-identification test statistic should lead us to
reject the null hypothesis whenever the sample size is large enough.

The Sargan statistic can be generalized to allow for heteroskedasticity
and/or clustering. For GMM, it becomes the Hansen-Sargan statistic,
which is the minimized value of the GMM criterion function.

These tests may have poor finite-sample properties, so it can be good
to bootstrap them; see Davidson and MacKinnon (2015).
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Durbin-Wu-Hausman Tests

When do we actually need to use instrumental variables?

Some variables may be measured with error, but how large are the
errors? Will they cause enough inconsistency to worry about?

Is a certain explanatory variable actually endogenous? If so, how
much inconsistency will this cause?

It may be perfectly reasonable to employ OLS estimation if the
disturbances are not very correlated with the regressors.

We can test whether there is correlation by using a test due to Durbin
(1954), Wu (1974), and Hausman (1978).

The null and alternative hypotheses for the DWH test are

H0 : y = Xβ + u, u ∼ IID(0, σ2I), E(X⊤u) = 0, and (45)

H1 : y = Xβ + u, u ∼ IID(0, σ2I), E(W⊤u) = 0. (46)
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Durbin-Wu-Hausman Tests

Under H1, β̂IV is consistent, but β̂OLS is not. Under H0, both are
consistent, but β̂OLS is more efficient.

Evidently, plim(β̂IV − β̂OLS) is zero under the null and nonzero under
the alternative.

The vector of contrasts is

β̂IV − β̂OLS = (X⊤PWX)−1X⊤PW y − (X⊤X)−1X⊤y (47)

= (X⊤PWX)−1(X⊤PW y − X⊤PWX(X⊤X)−1X⊤y
)

(48)

= (X⊤PWX)−1X⊤PW
(
I − X(X⊤X)−1X⊤)y (49)

= (X⊤PWX)−1X⊤PW MX y. (50)

Here (X⊤PWX)−1 is a positive definite matrix.

Testing whether β̂IV − β̂OLS = 0 is equivalent to testing whether
E(X⊤PW MX y) = 0. Since MX y = MX u, it does if PWX is uncorrelated
with MX u.
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Durbin-Wu-Hausman Tests

Let us partition X as [Z Y], where the k1 columns of Z belong to W, and
the k2 = k − k1 columns of Y are treated as potentially endogenous.

It is always the case that Z⊤û = Z⊤PW MX û = 0; here û = ûOLS.

But it will almost never be the case Y⊤PW MX û = 0. We can test
whether this vector differs significantly from 0.

The easiest way to test whether E(Y⊤PW MX y) = 0 is to use an F test
for the k2 restrictions δ = 0 in the OLS regression

y = Xβ + PWYδ + u. (51)

The OLS estimates of δ are, by the FWL Theorem, the same as those
from the FWL regression of MX y on MXPWY, that is,

δ̂ = (Y⊤PW MXPWY)−1 Y⊤PW MX y. (52)

Testing whether δ = 0 is equivalent to testing whether
E(Y⊤PW MX y) = 0. We can use an F test with k2 and N − k − k2 degrees
of freedom.
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Durbin-Wu-Hausman Tests

It is not hard to see that an F test of ζ = 0 in the regression

y = Xβ + MWYζ + u (53)

is numerically identical to the F test for δ = 0 in (51).

This follows from the fact that S(Y, PWY) and S(Y, MWY) are the
same subspace, so that (51) and (53) fit the same.

If the DWH test rejects, there are two possibilities.
1 At least one column of Y is endogenous.
2 One or more of columns of W have incorrectly been omitted from

Z; some instruments should have been treated as regressors.
If the DWH test does not reject, then we may feel justified in using
OLS. But classic pre-test issues arise when we use this test
(Guggenberger, 2010a, 2010b).
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Tests Based on Vectors of Contrasts

Hausman (1978) proposed a test that can be used whenever there are
two root-N consistent estimators.

One of them, say θ̂I, is like β̂IV. It is inefficient but consistent under
relatively weak conditions.

The other, say θ̂E, is like β̂OLS. It may be inconsistent, but it is more
efficient when it is consistent.

In a broad range of cases, we can write

N1/2(θ̂I − θ0)
a
= N1/2(θ̂E − θ0) + v, (54)

where v is a random k-vector that is uncorrelated with N1/2(θ̂E − θ0).

Recall the proof of the Gauss-Markov Theorem.

The vector v is asymptotically equal to N1/2 times the vector of
contrasts, which is just θ̂I − θ̂E.
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Tests Based on Vectors of Contrasts

Because v is not correlated with N1/2(θ̂E − θ0),

Var(v) a
= Var

(
N1/2(θ̂I − θ0)

)
− Var

(
N1/2(θ̂E − θ0)

)
. (55)

This is Hausman’s key result. Therefore, a suitable test statistic is

(θ̂I − θ̂E)
⊤(V̂ar(θ̂I)− V̂ar(θ̂E)

)−1
(θ̂I − θ̂E). (56)

However, Hausman forgot that the covariance matrix that is inverted
in the middle of (56) may not have full rank.

It does not have full rank in the DWH case if we define θ as β. We
need to define it as the coefficient vector for Y, which has k2 elements.

Care needs to be taken when using Hausman tests based on (56).
Ideally, the rank of Var(v) should be known. It is the number of
degrees of freedom for the test based on (56).

The numerical rank of V̂ar(θ̂I)− V̂ar(θ̂E) may be misleading.
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GIV Estimation Using Control Functions

The estimate of β from the DWH test regression (53) is simply β̂IV.

Here the regressor(s) MWY are called control functions.

There is no advantage to computing β̂IV in this way for linear
regression models, but control function estimators can be useful for
nonlinear models, such as logit and probit.

Care must be taken to obtain valid standard errors. The usual standard
errors from (51) are not valid, because the control functions are
generated regressors.

The easiest approach is often to use the bootstrap. The bootstrap
samples may be obtained by resampling the rows of [y, Y, X, W].

But bootstrap standard errors will be very misleading if β̂ is exactly
identified. They may perform poorly if there are not several over-
identifying restrictions. Bootstrap IQR approach should work better.
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GIV Estimation Using Control Functions

We can demonstrate numerically that the DWH regression yields β̂IV.

It is easiest to prove it if we assume that there is just one endogenous
right-hand-side variable and one instrument:

y1 = βy2 + u (57)
y2 = γw + v. (58)

In this case, it is obvious that

β̂IV = (y⊤
2 Pwy2)

−1y⊤
2 Pwy1. (59)

The DWH regression is

y1 = βy2 + ηMwy2 + u. (60)

The OLS estimate of β, which is the control function estimate, is then
easily seen to be
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GIV Estimation Using Control Functions

β̂CF =
(
y⊤

2 MMwy2
y2
)−1y⊤

2 MMwy2
y1. (61)

Now observe that
MMwy2

= PPwy2
, (62)

because Mwy2 and Pwy2 are orthogonal projection matrices. Projecting
off the former is equivalent to projecting onto the latter. Thus

β̂CF =
(
y⊤

2 PPwy2
y2
)−1y⊤

2 PPwy2
y1. (63)

Now observe that

PPwy2
= Pwy2(y

⊤
2 Pwy2)

−1y⊤
2 Pw. (64)

It follows that

y⊤
2 PPwy2

y2 = y⊤
2 Pwy2 and y⊤

2 PPwy2
y1 = y⊤

2 Pwy1. (65)

When we substitute (65) into (63), we find that
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GIV Estimation Using Control Functions

β̂CF = (y⊤
2 Pwy2)

−1y⊤
2 Pwy1 = β̂IV (66)

Because there is only one instrument, this expression can be simplified
further. Observe that

(y⊤
2 Pwy2)

−1 = (y⊤
2 w)−1w⊤w(w⊤y2)

−1, and (67)

y⊤
2 Pwy1 = y⊤

2 w(w⊤w)−1w⊤y1. (68)

Thus we see that

β̂CF = β̂IV =
y⊤

1 w
y⊤

2 w
= (w⊤y2)

−1w⊤y1. (69)

This is, of course, just the simple IV estimator for (57).

This result also holds when the structural equation includes a matrix
of exogenous regressors, say Z. We just replace w by MZw in (69).
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The simple IV estimator in (69) has an interesting interpretation.

If we regress y1 on Z and w, we get the coefficient estimate

w⊤MZ y1
w⊤MZ w

, (70)

which is just the OLS estimate for the reduced-form equation for y1.

If we regress y2 on Z and w, we get the coefficient estimate

w⊤MZ y2
w⊤MZ w

, (71)

which is just the OLS estimate for the reduced-form equation for y2.

Since these two OLS estimators have the same denominator, their ratio
is just the IV estimator w⊤MZ y1/w⊤MZ y2.

So the IV estimate will be smaller than the OLS estimate whenever the
coefficient (71) is larger than the coefficient (70).
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