
Generalized Least Squares

Generalized Least Squares

Consider the linear regression model

y = Xβ + u, E(uu⊤) = Ω, (1)

where Ω is a positive definite N × N matrix which may depend on X.

Suppose we know Ω, or at least can estimate it consistently.

To obtain an efficient estimator of β, we transform the model so that it
satisfies the conditions of the Gauss-Markov theorem.

Estimating the transformed model by OLS yields efficient estimates.

The transformation uses an N × N matrix Ψ, which is usually
triangular, that satisfies the equation

Ω−1 = ΨΨ⊤. (2)

For N not too large, we can use a Cholesky decomposition.
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Generalized Least Squares

The transformed model is

Ψ⊤y = Ψ⊤Xβ + Ψ⊤u. (3)

Since Ω is assumed to be nonsingular, so is Ψ.

The OLS estimator of β from (3) is

β̂GLS = (X⊤ΨΨ⊤X)−1X⊤ΨΨ⊤y = (X⊤Ω−1X)−1X⊤Ω−1y. (4)

This estimator is called generalized least squares, or GLS.

The covariance matrix of Ψ⊤u is the identity matrix:

E(Ψ⊤uu⊤Ψ) = Ψ⊤E(uu⊤)Ψ = Ψ⊤ΩΨ

= Ψ⊤(ΨΨ⊤)−1Ψ = Ψ⊤(Ψ⊤)−1Ψ−1Ψ = I.
(5)

Thus regression (3) has i.i.d. disturbances. When X is exogenous, the
Gauss-Markov theorem applies to it.
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Generalized Least Squares

If we replace X by Ψ⊤X and σ2
0 by 1 in the usual formula for the OLS

covariance matrix, we find that

Var(β̂GLS) = (X⊤ΨΨ⊤X)−1 = (X⊤Ω−1X)−1. (6)

The GLS estimator β̂GLS can also be obtained by minimizing the GLS
criterion function

(y − Xβ)⊤Ω−1(y − Xβ), (7)

which is just the SSR from the transformed regression (3).

The GLS estimator β̂GLS is also the solution of the moment conditions

X⊤Ω−1(y − Xβ̂GLS) = 0. (8)

These moment conditions are equivalent to the first-order conditions
for the minimization of the GLS criterion function (7).

Equations (8) are a special case of W⊤(y − Xβ̂W) = 0.
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Generalized Least Squares

Solving these moment conditions yields the MM estimator

β̂W = (W⊤X)−1W⊤y. (9)

The GLS estimator (4) is a special case of this one, with W = Ω−1X.

In general, the covariance matrix of β̂W is

Var(β̂W) = E
(
(β̂W − β0)(β̂W − β0)

⊤) (10)

= E
(
(W⊤X)−1W⊤uu⊤W(X⊤W)−1) (11)

= (W⊤X)−1W⊤ΩW(X⊤W)−1. (12)

For simplicity, we have treated X and W as exogenous here.

The GLS estimator will be at least as efficient as the MM estimator if

X⊤Ω−1X − X⊤W(W⊤ΩW)−1W⊤X (13)

is positive semidefinite. This can be proved easily enough.
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Computing GLS Estimates

Suppose that Ω = σ2∆. We can get away with just knowing ∆, because

β̂GLS = (X⊤Ω−1X)−1X⊤Ω−1y = (X⊤∆−1X)−1X⊤∆−1y. (14)

The factors of σ2 and 1/σ2 cancel out.

If we know ∆ but not Ω, we need to use

V̂ar(β̂GLS) = s2(X⊤∆−1X)−1, (15)

where s2 is the usual OLS estimate of the error variance from (3).

The standard formula (X⊤Ω−1X)−1X⊤Ω−1y requires either the inverse
of Ω or Ψ. Obtaining either of these from a known Ω becomes
increasingly difficult as N gets large.

For GLS to be feasible when N is very large, we cannot simply invert
Ω numerically and perhaps find Ψ numerically.
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Computing GLS Estimates

Sometimes Ω depends on a short vector of known, or estimable,
parameters, say γ. If so, we may be able to find an analytic expression
for Ψ(γ)x for any vector x.

Then we can form Ψ⊤(γ)y and Ψ⊤(γ)X and compute the GLS
estimator by running OLS on the transformed data:

β̂GLS =
(
X⊤Ψ(γ)Ψ⊤(γ)X

)−1X⊤Ψ(γ)Ψ⊤(γ)y. (16)

Alternatively, we can find an analytic expression for x⊤1 Ω−1(γ)x2 for
any pair of vectors x1 and x2.

Then we can form X⊤Ω−1(γ)X and X⊤Ω−1(γ)y and compute

β̂GLS =
(
X⊤Ω−1(γ)X

)−1X⊤Ω−1(γ)y. (17)

Example. When the ut follow an AR(1) process with autoregressive
parameter ρ, the matrix Ω(ρ) is easily seen to be
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Computing GLS Estimates

Ω(ρ) =
σ2

1 − ρ2


1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

...
...

...
...

ρN−1 ρN−2 ρN−3 · · · 1

. (18)

The corresponding Ψ(ρ) matrix is

Ψ(ρ) =


(1 − ρ2)1/2 −ρ 0 · · · 0 0

0 1 −ρ · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −ρ
0 0 0 · · · 0 1

. (19)

Notice that the transformation for the first observation differs from the
transformation for all the other observations. See Beach and
MacKinnon (Econometrica, 1978).
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Computing GLS Estimates

Whether ρ is known or estimated, the next step in GLS estimation of a
linear regression model with AR(1) errors is to form the vector Ψ⊤y
and the matrix Ψ⊤X.

This can be done without having to store the N × N matrix Ψ in
computer memory.

From (19), the first element of Ψ⊤y is (1 − ρ2)1/2y1, and the remaining
elements are yt − ρyt−1 for t = 2, . . . , N.

Each column of Ψ⊤X has precisely the same form as Ψ⊤y and can be
calculated in precisely the same way.

We could easily define a routine that takes a vector x and a scalar ρ and
forms Ψ⊤x, then apply it to y and to each of the columns of X.

When we either know ρ or can estimate it consistently, we just have to
regress Ψ⊤y on Ψ⊤X in order to obtain (feasible) GLS estimates of β.

For maximum likelihood estimation, we choose ρ̂ to maximize the
loglikelihood function.
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Weighted Least Squares

Let Ω be diagonal, and let ω2
i denote the i th diagonal element of Ω.

Then the GLS regression is just

ω−1
i yi = ω−1

i Xiβ + ω−1
i ui. (20)

The regressand and regressors are ω−1
i times the dependent and

independent variables, and the variance of ω−1
i ui is 1.

This special case of GLS is called weighted least squares, or WLS.

Observations for which the ω2
i is large are given low weights, and

observations for which it is small are given high weights.

If Ω = σ2∆ , with ∆ known but σ2 unknown, (20) remains valid if we
reinterpret ω2

i as the i th diagonal element of ∆. The variance of the
transformed disturbances is now σ2 instead of 1.
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Weighted Least Squares

If the original regression is

yi = β1 + β2 xi + ui, (21)

then the weighted regression is

yi/ωi = β1(1/ωi) + β2(xi/ωi) + ui/ωi. (22)

The regressand is yi/ωi, the regressor that corresponds to the constant
term is 1/ωi, and the regressor that corresponds to xi is xi/ωi.

Transforming the data so that the transformed disturbances have the
same variance is not the only reason for weighting.

Sometimes, sample weights are used when different observations
represent different numbers of observations in the population.

Using sample weights induces heteroskedasticity instead of correcting
for it, so we need to use an HCCME or CRVE.
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Feasible Generalized Least Squares

In practice, Ω is often not known even up to a scalar factor.

But in many cases Ω, or ∆ , is assumed to depend in a known way on a
vector of unknown parameters γ.

If we can estimate γ consistently, we can obtain Ω(γ̂) and Ψ(γ̂).

Then we can compute GLS estimates conditional on Ψ(γ̂). This is
called feasible generalized least squares, or feasible GLS.

As a simple example, consider the linear regression model

yi = Xiβ + ui, E(u2
i ) = exp(Ziγ). (23)

Here exp(Ziγ) is a skedastic function.

It is designed to be positive for every γ, so that we do not have to
worry about negative estimated variances.
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In order to estimate γ consistently, we must first obtain consistent
estimates of the ui.

We start by running OLS to obtain β̂ and û.

We then run the auxiliary linear regression

log û2
i = Ziγ + vi, i = 1, . . . , N, (24)

to find the OLS estimates γ̂.

These estimates are then used to compute

ω̂i =
(

exp(Ziγ̂)
)1/2 for all i. (25)

Finally, feasible GLS estimates of β are obtained by using OLS to
estimate the regression

yi/ω̂i = (1/ω̂i)Xiβ + ϵi. (26)
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If we substitute Xβ0 + u for y into the formula for the GLS estimator,
we find that

β̂GLS = β0 + (X⊤Ω−1X)−1X⊤Ω−1u. (27)

Taking β0 to the l.h.s., multiplying each factor by an appropriate
power of N, and taking probability limits, we see that

N1/2(β̂GLS − β0)
a
=

(
plim
N→∞

1
N

X⊤Ω−1X
)−1

N−1/2X⊤Ω−1u. (28)

Under standard assumptions, the inverse matrix is a nonstochastic
k × k matrix with full rank. The vector is stochastic and follows a
multivariate normal distribution.

The asymptotic distribution of N1/2(β̂GLS − β0) follows from (28). It is
multivariate normal with covariance matrix

Var
(
N1/2(β̂GLS − β0)

)
=

(
plim
N→∞

1
N

X⊤Ω−1X
)−1

. (29)

November 14, 2024 13 / 22



Feasible Generalized Least Squares

Now consider the analog of (28) for feasible GLS,

N1/2(β̂F − β0)
a
=

(
plim
N→∞

1
N

X⊤Ω−1(γ̂)X
)−1

N−1/2X⊤Ω−1(γ̂)u. (30)

It is not trivial to prove that β̂F is asymptotically equivalent to β̂GLS,
but it can be done if γ̂ is root-N consistent.

How well FGLS performs depends on how well γ̂ estimates γ and
how sensitive β̂GLS is to variation in Ω(γ).

When Ω(γ̂) is a very good estimator, then feasible GLS has
essentially the same properties as GLS itself.
In addition, the FGLS covariance matrix estimator will be similar
to the GLS one.
But if Ω(γ̂) estimates Ω(γ) poorly, feasible GLS estimates may
have quite different properties from real GLS estimates, and
inferences based on them may be quite misleading.
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Testing for Heteroskedasticity

Testing for heteroskedasticity is no longer very popular. Unless N is
small, it makes sense to use an HCCME without bothering to test.

A reasonably general model of conditional heteroskedasticity is

E(u2
i |Ωi) = h(δ + Ziγ), (31)

where h(·) is a nonlinear skedastic function, Zi is a 1 × r vector of
exogenous or predetermined variables belonging to the information
set Ωi, δ is a scalar parameter, and γ is an r-vector of parameters.

One plausible specification of the skedastic function is

h(δ + Ziγ) = exp(δ + Ziγ) = exp(δ) exp(Ziγ). (32)

This reduces to σ2 ≡ exp(δ) when γ = 0.
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Testing for Heteroskedasticity

If we define vi as u2
i − E(u2

i ), then equation (31) implies that

u2
i = h(δ + Ziγ) + vi. (33)

This looks like a nonlinear regression model, although the vi must be
strongly skewed to the right.

We can test for γ = 0 by running the linear regression

û2
i = bδ + Zibγ + residual. (34)

This is an easy way to test for all sorts of heteroskedasticity. We just
have to decide on Zi.

The test statistic is usually either F a∼ F(r, N − r − 1) or NR2 a∼ χ2(r).

The theoretical basis for (34) is the Gauss-Newton regression, to be
discussed in the context of nonlinear least squares (NLS).

Finite-sample properties of tests based on (34) are not great, especially
when r is not small, so it is good to use bootstrap P values.
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Models for Panel Data

Panel data involve two dimensions, one of them time. Consider the
linear regression model

ygt = Xgtβ + ugt, g = 1, . . . , G, t = 1, . . . , T, (35)

where Xgt is a 1 × k vector of observations on explanatory variables.
There are G cross-sectional units (groups) and T time periods

In (35), there is just one observation per group-period pair. It is a
balanced panel with N = GT observations. (maybe i instead of g)

There can also be models with multiple observations, say Ngt, per
group-period pair. Such an unbalanced panel will have
N = ∑G

g=1 Ng = ∑G
g=1 ∑T

t=1 Ngt observations. (i, g, and t subcripts)

Some panels are short and wide (e.g. T = 5, all Ng large), while others
are tall and narrow (e.g. T = 200, G = 2). The former may be called
landscape and the latter portrait.
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Models for Panel Data

OLS estimation of (35) is consistent but inefficient if the ugt are
correlated across g or across t.

The simplest and most popular way to allow for correlation across
both g and t is the error-components model

ugt = et + vg + ϵgt. (36)

We can treat the et and vg as either fixed or random. When we treat
them as fixed effects, they are parameters to be estimated by OLS.

When we treat them as random effects, we need to use GLS.

The model (36) involves two-way fixed or random effects. For
simplicity, we will focus on models with one-way effects.

We have already discussed linear regression models with fixed effects.
For the model

y = Xβ + Dη+ u, (37)
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Models for Panel Data

with G cross-section fixed effects, we found that

β̂FE = (X⊤MDX)−1X⊤MDy. (38)

and that

η̂ =


ȳ1 − X̄1β̂FE

ȳ2 − X̄2β̂FE
...

ȳG − X̄Gβ̂FE

. (39)

Here the ȳg and X̄g are sample means over each cross-section group.

Although we lose efficiency by using OLS, we can make
asymptotically valid inferences by using a CRVE with (37).

We could (and often should) also add time fixed effects.

The fixed-effects estimator (38) is also called the within-groups
estimator because it depends entirely on within-group variation.
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Models for Panel Data

The FE estimator is inefficient. It ignores between-group variation.

When any explanatory variables in X are well explained by D, the
corresponding elements of β̂FE have large variances.

Because we condition on D, it is OK for the fixed effects to be
correlated with X.

The FE estimator cannot be used with any explanatory variable that
varies only across groups. Such a variable would be collinear with D.

It is often impossible to include GT group-time effects.

For random-effects estimation, we must assume that

E(ugt |X) = E(vg + ϵgt |X) = 0, (40)

since vg and ϵgt are then both independent of X. Strong assumption!

In a panel of observations on workers, many variables might be
correlated with an unobserved variable like ability, which implicitly
enters into the individual-specific disturbance vg.
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Models for Panel Data

To estimate a random-effects model, we use (feasible) GLS.

Var(ugt) = σ2
v + σ2

ϵ , (41)

Cov(ugt ugs) = σ2
v , and (42)

Cov(ugt uhs) = 0 for all g ̸= h. (43)

These define the elements of the N × N covariance matrix Ω.

If the data are ordered by the cross-sectional units in G blocks of
T observations each, this matrix has the form

Ω =

Σ 0 · · · 0
...

...
...

0 0 · · · Σ

, Σ ≡ σ2
ϵ IT + σ2

v ιι⊤, (44)

where Σ is the T × T matrix with σ2
v + σ2

ϵ in every position on the
principal diagonal and σ2

v everywhere else.
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To obtain β̂RE, we need to estimate σ2
ϵ and σ2

v consistently; see ETM.

There is a tricky way to compute β̂RE. First, define PD ≡ I − MD.

Then compute

λ̂ = 1 −
(

Tσ̂2
v

σ̂2
ϵ

+ 1
)−1/2

, (45)

and run the OLS regression

(I − λ̂PD)y = (I − λ̂PD)Xβ + residuals. (46)

This is not hard, because we do not actually need PD. The vector PDx
simply contains the G means of x, spread out over all N observations.

The RE estimator from (46) is just a matrix-weighted average of the
OLS estimator β̂ and the between-groups estimator

β̂BG = (X⊤PDX)−1X⊤PDy, (47)

which uses only G observations.
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