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Consider the t-statistic for a⊤β = a⊤β0:

ta =
a⊤(β̂ − β0)

(a⊤V̂a)1/2
. (1)

Often just one element of a equals 1, and the remaining elements
equal 0. Then (1) is simply β̂j − βj0 divided by its standard error.

Here V̂ denotes one of CV1, CV2, or CV3.

When there are r > 1 linear restrictions of the form Rβ = r, inference
can be based on the Wald statistic

W = (Rβ̂ − r)⊤(RV̂R⊤)−1(Rβ̂ − r). (2)

When r = 1, the t-statistic (1) is just the signed square root of a
particular Wald statistic with R = a⊤ and r = a⊤β0.
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Asymptotic Inference with Clustering

Asymptotic analysis involves letting the sample size become
arbitrarily large, so that all but the highest-order terms vanish.

With clustered data, there is more than one natural way to let the
sample size become large.

We can make various assumptions about what happens to G and the
Ng as we let N tend to infinity.

Two key asymptotic results must hold.
1 A central limit theorem (CLT) must apply to the sum of the score

vectors sg. The vector ∑G
g=1 sg needs to follow a multivariate

normal distribution with variance matrix ∑G
g=1 Σg.

2 A law of large numbers (LLN) must apply to the matrices
∑G

g=1 ŝgŝ⊤g , ∑G
g=1 s̀gs̀⊤g , or ∑G

g=1 śgś⊤g that appear in the expressions
for CV1, CV2, or CV3, so that they converge to ∑G

g=1 Σg.
For asymptotic inference to be reliable, we need both the CLT and the
LLN to provide good approximations. That is not always the case!
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Asymptotic Inference with Clustering

There are currently two quite different types of assumptions on which
the asymptotic theory of cluster-robust inference can be based.

1 Let the number of clusters tend to infinity (large-G), without
restricting them to be small.

2 Hold the number of clusters fixed and let the number of
observations within each cluster tend to infinity (fixed-G).

The large-G approach generally seems preferable, because the fixed-G
approach involves very strong and unrealistic assumptions.

However, both approaches provide valuable insights.
Inference based on asymptotic theory can perform well, but it
performs poorly in many commonly-encountered situations.
This is particularly true for CV1. The cluster jackknife (CV3) is
always more conservative and usually works better.
Bootstrap methods may work even better, especially some
versions of the wild cluster bootstrap.
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Large Number of Clusters

Large Number of Clusters

The easiest approach is to assume that every cluster has a fixed
number of observations, say M.

Then N = MG, and both N and G go to infinity at the same rate.

In this special case, the appropriate normalizing factor for the
parameter estimator is either

√
G or

√
N.

It is not difficult to show that
√

G(β̂ − β0) is asymptotically
multivariate normal with variance matrix equal to the plim of

G(X⊤X)−1
( G

∑
g=1

Σg

)
(X⊤X)−1. (3)

This is evidently O(1) when N = MG, since the filling in the sandwich
is O(G), and the two inverse matrices are O(1/N).
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Large Number of Clusters

We can relax the assumption that G/N = M by allowing G to be only
approximately proportional to N, so that G/N is roughly constant as
N → ∞.

Djogbenou, MacKinnon, and Nielsen (JoE, 2019) and Hansen and Lee
(JoE, 2019) take a more flexible approach.

They allow some, and possibly all, of the Ng → ∞ as N → ∞, but
more slowly than N itself does.
Although a key assumption is that G → ∞, the appropriate
normalizing factor for β̂ − β0 is usually not

√
G.

This factor depends on the regressors, the relative cluster sizes, the
intra-cluster correlation structure, and interactions among these.

The t-statistic defined in (1) is shown to be asymptotically standard
normal even though the rate at which β̂ − β0 tends to zero is
unknown. This is a case of self-normalizing asymptotics.

There are technical conditions that must be satisfied if β̂ is to be
consistent and asymptotically normal.
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Large Number of Clusters

The closer these conditions are to being violated, the less well we
would expect asymptotic inference to perform.

We cannot allow a single cluster to dominate the sample, in the
sense that its size is proportional to N.
When the scores are uncorrelated, the size of the largest cluster
must increase no faster than the square root of the sample size.
However, it can increase faster than this when there is a lot of
intra-cluster correlation.
Asymptotic inference tends to be unreliable when Ng are highly
variable, especially when a very few clusters are unusually large.
Asymptotic inference also tends to be unreliable when the clusters
are heterogeneous (unbalanced) in other respects.

To see whether asymptotic inference is likely to be reliable, we should
see how large G is, how much the Ng vary, and how much variation
there is in leverage and partial leverage.
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Small Number of Large Clusters

Small Number of Large Clusters

Some authors have assumed that G remains fixed (i.e., is “small”) as
N → ∞, while the cluster sizes diverge (i.e., are “large”).

Bester, Conley, and Hansen (JoE, 2011) proved that, for CV1, the
t-statistic (1) follows the t(G − 1) distribution asymptotically under
very strong assumptions:

All the clusters are assumed to be the same size M.
A CLT must apply to the normalized score vectors M−1/2sg for all
g = 1, . . . , G, as M → ∞.

This second assumption limits the amount of dependence within each
cluster and requires it to diminish quite rapidly as M → ∞. It rules out
the random-effects model.

The t(G − 1) distribution is the default in Stata for CV1-based
inference. It can lead to noticeably more accurate, and more
conservative, inferences than the t(N − k) distribution.
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When Asymptotic Inference Can Fail

When Asymptotic Inference Can Fail

Inference is “reliable” if:
1 tests at level α reject approximately α% of the time under the null;
2 confidence intervals at level 1 − α cover the true value

approximately (1 − α)% of the time.
It is sometimes claimed that asymptotic inference based on CV1 is
reliable when G ≥ 50.

This is false. There is no magic value of G that is always big enough.

In very favorable cases, inference based on CV1 and the t(G − 1)
distribution can be fairly reliable when G = 20, but in unfavorable
ones it can be unreliable even when G = 200 or more.

Inference based on CV3 tends to be more reliable, sometimes much
more reliable, than inference based on other CRVEs. It can sometimes
be too conservative.
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Cluster Heterogeneity

Cluster Heterogeneity

The number of clusters G and the extent to which the distribution of
the score vectors vary across clusters determines the quality of the
asymptotic approximation.

When cluster sizes vary a lot, it is very likely that the score vectors
will also vary greatly across clusters.
They can also vary due to heteroskedasticity of the disturbances at
the cluster level and systematic variation across clusters in the
distribution of the regressors.
In view of the rate condition in the proofs for the large-G case,
asymptotic approximations will surely become worse as max Ng
increases relative to N/G.

For CV1 and CV2, t-tests always over-reject when the approximation is
poor. For CV3, they can either over-reject or under-reject.
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Cluster Heterogeneity

Cluster-robust t-tests and Wald tests are at risk of over-rejecting to an
extreme extent in two situations.

One or a few clusters are unusually large.
Only a few clusters are treated.

In these cases, one cluster, or just a few of them, have high leverage, in
the sense that omitting one of these clusters has the potential to change
the OLS estimates substantially.

Both of these situations can occur even when G is not small.
When one cluster is unusually large, the distribution of its score
vector is much more spread out than the ones for other clusters.

Djogbenou, MacKinnon, and Nielsen (JoE, 2019) studies a case where
up to half the sample is in one cluster. Rejection rates for CV1 t-tests at
.05 level increase as G increases.

This is empirically relevant, since more than half of all incorporations
in the U.S. are in Delaware!
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Cluster Heterogeneity

Figure 1: Rejection rates for CV1 t-tests when there is one big cluster
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Cluster Heterogeneity

Although CV3 works far from perfectly, it performs very much better
than CV1 and CV2 in a simulation experiment with cluster sizes
proportional to incorporations in U.S. states.

Figure 2 is from MacKinnon, Nielsen, and Webb (JAE, 2023). Delaware
is always treated, along with 1 to 47 other states.

Having some extremely small clusters in a sample generally does not
cause any problems, so long as there is not too much heterogeneity in
the remainder of the sample.

Suppose that a sample consists of, say, 25 large clusters, each with
roughly 200 observations, and 15 tiny clusters, each with just one
or a handful of observations.
Except in very unusual cases, coefficient estimates and t-statistics
would hardly change if we were to drop the tiny clusters, so this
sample is better thought of as having 25 equal-sized clusters.
The asymptotic approximations would perform just about the
same whether or not the tiny clusters were included.
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Cluster Heterogeneity

Figure 2: Rejection rates with cluster sizes proportional to incorporations
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Tests at .05 level. 52.8% of the observations are for Delaware, which is always treated.
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Treatment and Few Treated Clusters

Treatment and Few Treated Clusters

Conventional inference fails when the regressor of interest is a
treatment dummy, and treatment occurs only for observations in a
small number of clusters.

Empirical score vectors for the treated clusters, even when modified
(CV2, CV3), can provide very poor estimates of the actual score vectors.

Suppose dgi is the treatment dummy for observation gi, and sd
g is the

element of sg corresponding to the dummy.

If only observations in cluster 1 are treated, then

sd
g =

Ng

∑
i=1

dgiugi =
N1

∑
i=1

d1iu1i for g = 1

= 0 for all g ̸= 1.

(4)

The scores for the treatment dummy equal 0 for all control clusters!
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Treatment and Few Treated Clusters

Because the treatment regressor must be orthogonal to the residuals,
the empirical score for cluster 1, ŝd

1, equals 0.

Since the actual score sd
1 ̸= 0, this implies that CV1 provides a dreadful

estimate of V(β̂), at least for the coefficient on the treatment dummy.

The CV1 standard error of this coefficient can easily be too small by a
factor of five or more.

When more than one cluster is treated, the problem is not as severe.
The ŝd

g sum to 0 over the observations in all treated clusters.
This causes them to be too small, but not to the same extent as
when just one cluster is treated.
How well the ŝg mimic the sg depends on the sizes of treated and
control clusters, the values of other regressors, and the numbers of
treated observations within treated clusters.
As G1 (the number of treated clusters) increases, the problem
often goes away fairly rapidly.

November 14, 2024 15 / 25



Treatment and Few Treated Clusters

Increasing G when G1 is small and fixed does not help and may cause
over-rejection to increase.

For asymptotic theory to work, we need G1/G to tend to a constant as
the sample size increases.

When a cluster is either fully treated or not, having very few
control clusters is as bad as having very few treated clusters.
In fact, for models with balanced clusters, there is a perfect
symmetry between [G1, G − G1] and [G − G1, G1].
The situation is more complicated for DiD models, because then
only some observations in the treated clusters are treated.

For detailed treatments of the few-treated problem, see MacKinnon
and Webb (JAE, 2017; TPM, 2017; EJ, 2018).

When G1 is small, tests based on CV3 over-reject considerably less
severely than ones based on CV1. But they still over-reject.

Figure 3 is taken from MacKinnon, Nielsen, and Webb (JAE, 2023).
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Treatment and Few Treated Clusters

Figure 3: Rejection rates for t-tests as number of treated clusters varies
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(b) Rejection Frequencies Based on t(23), γ = 4

• Tests are at the .05 level. N = 9600 and G = 24.
• When γ = 0, Ng = 400 for all g.
• When γ = 4, the Ng vary from 32 to 1513.
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The Pairs Cluster Bootstrap

The Pairs Cluster Bootstrap

This bootstrap DGP is applicable to every model for clustered data.

It is also sometimes referred to as the cluster bootstrap, the block
bootstrap, the pairwise bootstrap, or resampling by cluster.

The pairs cluster bootstrap works by grouping the data for every
cluster into a [yg, Xg] pair and then resampling from the G pairs.

Every bootstrap sample is constructed by choosing G pairs at random
with equal probability 1/G. Thus N varies across them, unless all
cluster sizes are the same.

Null not imposed, so numerator of bootstrap t-statistic must be β̂∗
b − β̂.

The bootstrap samples may not mimic the actual sample well because:
The largest (or smallest) clusters may be over-represented in some
bootstrap samples and under-represented in others.
The X⊤X matrix is different for every bootstrap sample.
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The Pairs Cluster Bootstrap

For linear regression models, we should form the matrices and vectors

X⊤
g Xg, X⊤

g yg, g = 1, . . . , G. (5)

Then we resample from the pairs [X⊤
g Xg, X⊤

g yg].

Summing these yields the bootstrap sample [X∗⊤X∗, X∗⊤y∗], from
which we obtain

β̂∗ = (X∗⊤X∗)−1X∗⊤y∗. (6)

We can also readily obtain the CV1 and CV3 variance estimators for β̂∗.
CV2 takes a bit more work.

As usual, we generate B bootstrap samples and use them to compute
β̂∗b for b = 1, . . . , B.

Unless we are just calculating bootstrap standard errors, we also need
to compute a test statistic, say τ∗

b , for b = 1, . . . , B. The τ∗
b could be

either t statistics or Wald statistics.
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The Wild Cluster Bootstrap

The Wild Cluster Bootstrap

The wild cluster bootstrap was first suggested by Cameron, Gelbach,
and Miller (REStat, 2008). There are two variants: restricted and
unrestricted, called WCR and WCU. For WCR,

Estimate model subject to restriction(s) to obtain β̃ and the ũg.
Multiply ũg by v∗g ∼ iid(0, 1) (often Rademacher, ±1 with prob.
1/2 each). Bootstrap regressand is y∗

g = Xgβ̃ + ũgv∗g .
This preserves the intra-cluster correlations of the scores.
Equivalently (faster!) generate the bootstrap scores directly as

s∗b
g = v∗b

g s̃g, g = 1, . . . , G, (7)

where s̃g = X⊤
g ũg is the score vector for cluster g evaluated at β̃.

Unlike the pairs cluster bootstrap, the WCR bootstrap uses the
actual Xg and thus retains the actual cluster sizes.
WCR bootstrap can be extremely fast, unless G is very large.
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The Wild Cluster Bootstrap

Djogbenou, MacKinnon, and Nielsen (JoE, 2019) establishes the
asymptotic validity of the WCR and WCU bootstraps.

For the WCU bootstrap, the unrestricted scores, the ŝg, are used
instead of the restricted ones, the s̃g, in the bootstrap DGP (7).

This means that the bootstrap test statistic must have numerator
β̂∗

b − β̂, like the one for the pairs cluster bootstrap.
In most cases, the WCU bootstrap does not perform as well in
finite samples as the WCR one.
However, it has the advantage that the bootstrap DGP does not
depend on the restrictions to be tested.
Same set of bootstrap samples can be used to perform tests on any
restriction or set of restrictions and/or to construct confidence
intervals for any coefficient of interest.
These may be studentized bootstrap intervals, or ones that use
bootstrap standard errors.
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The Wild Cluster Bootstrap

Classic versions of the WCR and WCU bootstraps are surprisingly
inexpensive to compute. One method requires only the matrices X⊤

g Xg
and the vectors X⊤

g yg; see MacKinnon (E&S, 2023).

Tricks employed by boottest for Stata make even faster computation
possible; see Roodman, MacKinnon, Nielsen, and Webb (SJ, 2019).

boottest computes WCR bootstrap P values for both t-tests and Wald
tests, and also WCR bootstrap confidence intervals.

Performance of the WCR bootstrap
It tends to deteriorate as G becomes smaller, as k increases, and as the
clusters become more heterogeneous.

It tends to over-reject when a very few clusters are much larger
than average or have very high partial leverage.
It tends to under-reject when the number of treated clusters G1, or
control clusters G0 = G − G1, is very small, even for large G.
In the latter case, the WCU and Pairs bootstraps tend to
over-reject, as do asymptotic tests.
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The Wild Cluster Bootstrap

When G is small, the WCR bootstrap encounters an important
practical problem.

For the Rademacher distribution, or any other two-point
distribution, the number of possible bootstrap samples is just 2G.
Thus number of possible symmetric bootstrap P values is 2G−1.

The 6-point distribution of Webb (CJE, 2023) largely solves this
problem, because 6G >> 2G. It works almost as well as Rademacher
for most values of G, and sometimes much better when G is small.

Whenever either 2G (for Rademacher) or 6G (for six-point) is smaller
than B, we can enumerate all possible bootstrap samples instead of
drawing them at random.

This eliminates simulation randomness. boottest uses enumeration
by default when B exceeds the number of possible bootstrap samples.

Could also use continuous distributions like N(0, 1) or U(−
√

3,
√

3),
but they generally do not work as well as discrete distributions.
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The Wild Cluster Bootstrap

MacKinnon, Nielsen, and Webb (JAE, 2023) proposes three new
variants of the WCR (and also of the WCU) bootstraps.

The classic WCR bootstrap uses (7) to generate bootstrap samples and
CV1 to calculate standard errors. It is now called WCR-C.

Two of the new variants use CV3 and can be expensive.

The WCR-S variant uses CV1 test statistic, but the bootstrap scores are
generated using an alternative to (7) that transforms the restricted
scores in a way similar to the śg used by CV3.

All three new variants outperform WCR-C in many cases.
WCR-S and WCU-S are now in boottest. Both often work well,
with WCU-S sometimes much better than WCU-C.
Tendency to over-reject increases much more slowly for WCR-S
than for WCR-C as k and/or cluster size variation increases.
Unfortunately, new variants still tend to under-reject severely
when the number of treated clusters is small.
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The Wild Cluster Bootstrap

Figure 4: Rejection frequencies for bootstrap tests as k varies
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• N = 9600 and G = 24.
• Cluster sizes vary from 130 to 899 (γ = 2).
• There are 400,000 replications, and B = 399.
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