
Cluster-Robust Inference

Cluster-Robust Inference

Consider the linear regression model

ygi = Xgiβ + ugi, g = 1, . . . , G, i = 1, . . . , Ng, (1)

where the data have been divided into G disjoint clusters. This model
can also be written as

yg = Xgβ + ug, g = 1, . . . , G, (2)

Cluster g has Ng observations, so that N = ∑G
g=1 Ng, and the vectors

and matrices in (2) have Ng rows.

ug and uh are assumed independent for g ̸= h, but with arbitrary
patterns of heteroskedasticity and dependence within each cluster.

Clusters might correspond to classrooms, schools, families, villages,
hospitals, firms, industries, years, cities, counties, states, or countries.
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Cluster-Robust Inference

The OLS estimator is

β̂ = (X⊤X)−1X⊤y = (X⊤X)−1
G

∑
g=1

X⊤
g yg, (3)

where y stacks the yg, and X stacks the Xg.

The random part of β̂ is

β̂ − β0 = (X⊤X)−1
G

∑
g=1

X⊤
g ug = (X⊤X)−1

G

∑
g=1

sg, sg = X⊤
g ug. (4)

Statistical properties of β̂ depend on those of the score vectors sg.

To obtain consistency and asymptotic normality, Djogbenou,
MacKinnon, and Nielsen (JoE, 2019) requires G → ∞ and imposes
assumptions on the sg.

Ideally, G would be large, and the distributions of the sg would be the
same for all clusters.
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Cluster-Robust Inference

The true variance matrix of β̂ is

Var(β̂) = (X⊤X)−1
( G

∑
g=1

Σg

)
(X⊤X)−1, Σg = E(sgs⊤g ). (5)

We need to estimate the Σg, and this can be done in several ways.

The most popular cluster-robust variance estimator, or CRVE, is

CV1:
G(N − 1)

(G − 1)(N − k)
(X⊤X)−1

( G

∑
g=1

ŝgŝ⊤g
)
(X⊤X)−1, (6)

where ŝg = X⊤
g ûg is the empirical score vector for cluster g.

Inference is usually based on the t(G − 1) distribution, although it is
strictly valid only under extremely unrealistic assumptions. See Bester,
Conley, and Hansen (JoE, 2011).
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Cluster-Robust Inference

There are two well-known alternatives to CV1:

CV2: (X⊤X)−1
( G

∑
g=1

s̀gs̀⊤g
)
(X⊤X)−1, (7)

where s̀g = X⊤
g M−1/2

gg ûg, and Mgg = INg − Xg(X⊤X)−1X⊤
g is the g th

diagonal block of the projection matrix MX , which satisfies û = MXu.
M−1/2

gg is its inverse symmetric square root.

CV3:
G − 1

G
(X⊤X)−1

( G

∑
g=1

śgś⊤g
)
(X⊤X)−1, (8)

where śg = X⊤
g M−1

gg ûg. CV3 is actually a cluster jackknife estimator.

CV2 and CV3 were proposed in Bell and McCaffrey (SM, 2002). When
G = N, they reduce to the familiar HC2 and HC3 estimators of
MacKinnon and White (JoE, 1985).
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Modeling Intra-Cluster Dependence

Modeling Intra-Cluster Dependence

Intra-cluster correlations of the disturbances and regressors, and hence
of the scores, can arise for many reasons.

The simplest and most popular model is the random-effects, or
error-components, model

ugi = λεg + εgi, (9)

where the idiosyncratic shock εgi ∼ iid(0, ω2) is independent of the
cluster-wide shock εg ∼ iid(0, 1).

For (9) the variance matrix Ωg has diagonal elements λ2 + ω2 and
off-diagonal elements λ2.
Within every cluster, the disturbances are equi-correlated, with
correlation coefficient λ2/(λ2 + ω2).
If we include cluster fixed effects, as is very commonly done, they
absorb the εg and remove all intra-cluster correlation.
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Modeling Intra-Cluster Dependence

A slightly more complicated model is the factor model

ugi = λgiεg + εgi. (10)

The effect of εg on ugi is given by a weight, or factor loading, λgi. The
λgi could be either fixed parameters or random variables.

For the factor model (10), E(ugi) = 0, and Var(ugi) = λ2
gi + ω2.

Cluster dependence is characterized by Cov(ugi, ugj) = λgiλgj,
which differs across (i, j) pairs.
Cov(ugi, ugj) is zero only when the factor loadings are all zero and
constant when they are all constant.

Consider a model for student achievement, where observations are for
students, and clusters denote classrooms.

Then εgi measures unobserved student-specific characteristics, εg
measures unobserved teacher quality, and λgi measures the extent to
which student i is affected by teacher quality.
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Modeling Intra-Cluster Dependence

Including cluster fixed effects transforms the factor model (10) into

ugi − ūg = (λgi − λ̄g)εg + (εgi − ε̄g). (11)

The averages are taken across observations within each cluster, so that
ūg = N−1

g ∑
Ng
i=1 ugi, and likewise for the λ̄g and the ε̄g.

The intra-cluster covariance for (11) is

Cov(ugi − ūg, ugj − ūg) = (λgi − λ̄g)(λgj − λ̄g), (12)

which is zero if and only if, for each g, the λgi are the same for all i.

Including fixed effects almost always reduces intra-cluster
correlations, but rarely will it eliminate them.

Only for (9), and for more general models where the λg and/or the ωg
vary across clusters, will it remove all intra-cluster dependence.

Especially when clusters are large, we generally need both cluster
fixed effects and a CRVE.
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At What Level Should We Cluster?

At What Level Should We Cluster?

In many cases, there is more than one level at which we could cluster.
With data on educational outcomes, we may be able to cluster by
classroom, by school, or perhaps by school district.
With data that are coded geographically, we may be able to cluster
by county, by state, or even by region.

Suppose there are two possible levels of clustering, coarse and fine,
with one or more fine clusters nested within each of the coarse clusters.

With G coarse clusters, the middle matrix in (5) is ∑G
g=1 Σg. If each

coarse cluster contains Mg fine clusters indexed by h, then

Σg =
Mg

∑
h1=1

Mg

∑
h2=1

Σg,h1h2 , (13)

where Σg,h1h2 denotes the covariance matrix of the scores for fine
clusters h1 and h2 within coarse cluster g.
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At What Level Should We Cluster?

The difference between the middle matrices for coarse and fine
clustering is

G

∑
g=1

Σg −
G

∑
g=1

Mg

∑
h=1

Σgh = 2
G

∑
g=1

Mg

∑
h1=1

Mg

∑
h2=h1+1

Σg,h1h2 . (14)

Under the assumption of fine clustering, the terms on the RHS of (14)
are all zero. Under the assumption of coarse clustering, at least some
of them are non-zero, and (14) must therefore be estimated.

If we cluster at the fine level when coarse clustering is
appropriate, the CRVE is inconsistent.
If we cluster at the coarse level when fine clustering is
appropriate, the CRVE has to estimate (14) even though it is
actually zero.
This causes loss of power and perhaps poor finite-sample
inference, especially when G is small.
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At What Level Should We Cluster?

Rules of thumb for choosing the level at which to cluster:
Cluster at the coarsest feasible level.
Cluster at whichever level yields the largest standard error(s) for
the coefficient(s) of interest.

When G is small, cluster-robust standard errors tend to be too small,
perhaps much too small. Thus the first rule of thumb is dangerous.

However, the second rule of thumb may be too conservative.
For treatment regressions, the level at which to cluster depends on
the level at which treatment is applied. See Bertrand, Duflo, and
Mullainathan (QJE, 2004) and the discussion on the next page.

It is possible to test the level of clustering, but pre-test issues arise.
Ibragimov and Müller (REStat, 2016) proposes a test based on
estimating the model separately for each cluster.
MacKinnon, Nielsen, and Webb (JoE, 2023) proposes
score-variance tests based on the empirical analogs of (14).
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At What Level Should We Cluster?

It treatment is applied randomly at some level, then we do not need to
cluster at a higher level.

With random treatment at the individual level, we can use an HCCME.

With random treatment at, say, the firm level, then we must cluster at
the firm level. But there should be no need to cluster at a higher level.

These results follow from the fact that the middle matrix in a CRVE is
an estimate of the variance of the score vectors.

Each element of the score vector for the treatment dummy is a
disturbance, say ugi, times the treatment dummy projected off all the
other regressors, say vgi = (MXd)gi.

The covariance of ugivgi and uhjvhj is

E(ugiuhjvgivhj) = E(ugiuhj)E(vgivhj). (15)

So whenever E(vgivhj) = 0, the observation pair indexed by gi and hj
does not contribute to Σ.
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Leverage and Influence

Leverage and Influence

Heterogeneity across clusters makes asymptotic inference less reliable.

Classic measures of heterogeneity are leverage and influence.

These are generalized to cluster-level measures in MacKinnon,
Nielsen, and Webb (SJ, 2023).

If estimates change a lot when a cluster is deleted, it is said to be
influential. We should be wary of highly influential clusters.

To identify influential clusters, construct X⊤
g Xg and X⊤

g yg for
g = 1, . . . , G. Then the estimates omitting cluster g are

β̂(g) = (X⊤X − X⊤
g Xg)

−1(X⊤y − X⊤
g yg). (16)

We cannot partial out regressors other than cluster fixed effects prior to
computing the β̂(g), because the latter would then depend indirectly
on the observations for the g th cluster.
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Leverage and Influence

When βj is a parameter of particular interest, it is good to report the
β̂
(g)
j for g = 1, . . . , G in either a histogram or a table.

If β̂
(h)
j differs a lot from β̂j for some h, then cluster h is influential.

In some extreme cases, it may be impossible to compute β̂
(h)
j for

some h. If so, the original estimates should probably not be believed.
This will happen, for example, when cluster h is the only treated one.

An alternative way to write CV3 is

CV3:
G − 1

G

G

∑
g=1

(β̂(g) − β̂)(β̂(g) − β̂)⊤. (17)

This is the matrix version of the classic jackknife variance estimator.
Unless all clusters are tiny, (17) is much faster to compute than (8).

The Stata package summclust and the built-in option
vce(jackknife,mse) calculate CV3 standard errors based on (17).
These can be much more reliable than CV1 standard errors.
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Leverage and Influence

Figure 1: Timings for three ways to compute CV3
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Leverage and Influence

A high-leverage cluster is one for which the regressors contain a lot of
information about the fitted values.

High-leverage observations are associated with a high value of hi, the
i th diagonal element of H = PX = X(X⊤X)−1X⊤.

The analog of hi in the cluster case is the Ng × Ng matrix
Hg = Xg(X⊤X)−1X⊤

g . Thus we can define

Lg = Tr(Hg) = Tr
(
X⊤

g Xg(X⊤X)−1), g = 1, . . . , G. (18)

The Lg are easy to compute because we have already calculated
(X⊤X)−1 and the X⊤

g Xg.

For a cluster with one observation, Lg reduces to the usual measure of
leverage at the observation level.

High-leverage clusters can be identified by comparing the Lg to their
own average, which is k/G. If, for some h, Lh is substantially larger
than k/G, then cluster h has high leverage.
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Leverage and Influence

A cluster can have high leverage either because Nh is much larger than
G/N or because the matrix Xh is somehow extreme relative to the
other Xg matrices, or both.

For example, Lh is likely to be much larger than k/G if cluster h is one
of just a few treated clusters.

When one of the regressors is a fixed-effect dummy for cluster g,
the matrices X⊤X − X⊤

g Xg are singular.
This problem solves itself if we partial out the fixed-effect
dummies and replace X by X̃ and y by ỹ, the matrix and vector of
deviations from cluster means.
The sum of the Lg is k. If we partial out l regressors, then the sum
will instead be k − l.
The gj th element of ỹ is ygj − N−1

g ∑
Ng
i=1 ygi, and similarly for the

Xgi. Since this depends only on observations for cluster g, the
jackknife CV3 estimator (17) remains valid.

November 8, 2024 16 / 21



Critical Values

Critical Values

It is common to use the t(G − 1) distribution for inference based on
t statistics, and Stata does so by default.

Critical values can also be based on various approximations, which
depend on X and an assumed form of Ω.

Bell and McCaffery (SM, 2002) suggests methods for CV2 and CV3
t-statistics based on the Student’s t distribution with an estimated
degrees-of-freedom (d-o-f) parameter.

These employ a “Satterthwaite approximation” and calculate the
d-o-f parameter under the assumption that Var(u) = σ2I.
The d-o-f parameter is different for every hypothesis to be tested,
and it can be much less than G − 1.

Imbens and Kolesár (REStat, 2016) proposes a similar procedure for
t-tests based on CV2 under the assumption that Var(u) corresponds to
a cluster random-effects model. But this makes no sense if there are
cluster fixed effects.
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Critical Values

Young (2016) proposes a related method that uses CV1 instead of CV2.

Pustejovsky and Tipton (JBES, 2018) generalizes the procedure of B&M
(2002) to Wald tests based on CV2.

Simulations suggest that their Wald tests rarely over-reject but
often under-reject, sometimes quite severely.

Very recently, Hansen (WP, 2024) proposes a method for inference
based on CV3 t statistics, again under the assumption that Ω = σ2I.

It involves estimating two parameters. One of them shrinks the CV3
standard error, and the other is a d-o-f parameter, smaller than G − 1
and sometimes very small.

The Hansen procedure seems to avoid the serious under-rejection that
can occur if we combine CV3 with the t(G − 1) distribution.

Hansen has a Stata package called jregress, which runs an OLS
regression, computes his modified CV3 standard errors, and uses them
and the t distribution to compute P values and confidence intervals.
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Two-Way Clustering

Two-Way Clustering

There can be clustering in two or more dimensions. For example,
There may be clustering by jurisdiction and also by time period.
In finance, there is often clustering by both firm and year.

Thus, instead of (2), we might have

ygh = Xghβ + ugh, g = 1, . . . , G, h = 1, . . . , H, (19)

where ygh, ugh, and Xgh contain the rows of y, u, and X for cluster g in
the first clustering dimension and cluster h in the second.

The GH clusters into which the data are divided in (19) represent the
intersection of the two clustering dimensions. Note that Ngh may be 0.

If there are Ng observations in cluster g, Nh observations in cluster h,
and Ngh observations in cluster gh, then

N =
G

∑
g=1

Ng =
H

∑
h=1

Nh =
G

∑
g=1

H

∑
h=1

Ngh. (20)
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Two-Way Clustering

The scores for the clusters in the first and second dimensions are
sg = X⊤

g ug and sh = X⊤
h uh, and for the intersections sgh = X⊤

ghugh.

If we assume that

Σg = E(sgs⊤g ), Σh = E(shs⊤h ),

Σgh = E(sghs⊤gh), E(sghs⊤g′h′) = 0 for g ̸= g′ and h ̸= h′,
(21)

then the variance matrix of the scores is seen to be

Σ =
G

∑
g=1

Σg +
H

∑
h=1

Σh −
G

∑
g=1

H

∑
h=1

Σgh. (22)

The scores are assumed to be independent whenever they do not share
a cluster along either dimension.

It is important to distinguish between two-way clustering and
clustering by the intersection of the two dimensions.

With clustering by intersection, all three terms on the r.h.s. of (22)
would be equal, so that Σ = ∑G

g=1 ∑H
h=1 Σgh. Extremely restrictive!
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Two-Way Clustering

An estimator of the variance matrix of β̂ is

V̂ar(β̂) = (X⊤X)−1Σ̂(X⊤X)−1,

Σ̂ =
G

∑
g=1

ŝgŝ⊤g +
H

∑
h=1

ŝhŝ⊤h −
G

∑
g=1

H

∑
h=1

ŝghŝ⊤gh.
(23)

Each of the matrices on the r.h.s. of second equation in (23) is usually
multiplied by a scalar factor to correct for degrees of freedom.

The third term in (22) is subtracted to avoid double counting. Thus Σ̂

may not always be positive definite. What should we do?
Use eigenvalue decomposition to force matrix to be positive
semidefinite; see Cameron, Gelbach, and Miller (JBES, 2011).
Omit the third term. But this can lead to inconsistency.
Use largest standard error (smallest test statistic) from Σ̂, Σ̂G, Σ̂H.

See MacKinnon, Nielsen, and Webb (JBES, 2021; WP 1516, 2024),
Davezies, D’Haultfoeuille and Guyonvarch (AS, 2021).
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