
Monte Carlo Tests

Monte Carlo Tests

A random variable τ = τ(y, θ) is pivotal if the distribution of τ(y, θ0)
is the same for every DGP in M with θ = θ0.

In particular, the CDF F(τ) does not depend on any nuisance
parameters. It may only depend on things we observe, like N and X.

If F(τ) did vary with the DGP in finite samples but not asymptotically,
then τ would be asymptotically pivotal.

In the classical normal linear model, t and F statistics are pivotal.
If a test statistic is pivotal, we can perform an exact test, or
construct an exact confidence interval, by simulation.
We simply need to generate B simulated test statistics τ∗

b from
some DGP in M with θ = θ0.
It is essential to choose B so that α(B + 1) is an integer, where α is
the level of the test; see below.
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Monte Carlo Tests

The τ∗
b are used to calculate a Monte Carlo P value for τ.

A bootstrap P value (below) is computed just like a Monte Carlo
P value, but since τ is not pivotal the test is not exact.

The EDF of the τ∗
b is given by

F̂∗(x) =
1
B

B

∑
b=1

I(τ∗
b ≤ x). (1)

If a test rejects in the upper tail, the Monte Carlo P value, or simulated
bootstrap P value, is

p̂∗(τ) = 1 − F̂∗(τ) = 1 − 1
B

B

∑
b=1

I(τ∗
b ≤ τ) =

1
B

B

∑
b=1

I(τ∗
b > τ). (2)

In principle, we could let B → ∞, so that p̂∗(τ) → p∗(τ), the ideal
bootstrap P value.

Like every P value, p̂∗(τ) must lie between 0 and 1.
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Monte Carlo Tests

For example, if B = 999, and 36 of the τ∗
b were greater than τ, we

would have p̂∗(τ) = 36/999 ∼= .036.

This procedure yields an exact test for pivotal test statistics even for
finite values of B, provided B is chosen so that α(B + 1) is an integer.

If α = .05, values of B that satisfy this condition are 19, 39, 59, and
so on. If α = .01, they are 99, 199, 299, and so on.
That is why B = 999 in the above example. 999 works for all
interesting values of α, including 0.001, 0.01, 0.025, 0.05, and 010.

Suppose we sort the original test statistic τ and the B bootstrap
statistics τ∗

b , b = 1, . . . , B, from largest to smallest. Since τ is pivotal,
these are independent draws from the same distribution.

There are exactly R simulations for which τ∗
b > τ. Thus, if R = 0, τ is

the largest value in the set, and if R = B, it is the smallest.
The estimated P value p̂∗(τ) is just R/B.
The bootstrap test rejects if R/B < α, that is, if R < αB.
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Monte Carlo Tests

Let [αB] be the largest integer smaller than αB.

There are [αB] + 1 such values of R, namely, 0, 1, . . . , [αB]. Thus the
probability of rejection is

(
[αB] + 1

)
/(B + 1).

If we equate this probability to α and multiply by B + 1, we find that

α(B + 1) = [αB] + 1. (3)

Equation (3) holds if and only if α(B + 1) is an integer. Therefore, the
Type I error is precisely α if and only if that is the case.

Let B = 99 and α = .05. Then p̂∗(τ) < .05 whenever τ is in
positions 1, 2, 3, 4, or 5. This occurs with probability 5/100 = .05.
When (3) does not hold, Monte Carlo tests will over-reject or
under-reject in a manner that is O(1/B) and depends on B.

The figure shows rejection frequencies for two types of Monte Carlo
test. One rejects when R < αB, and one rejects when R + 1 ≤ α(B + 1).
The latter is more conservative unless α(B + 1) is an integer.
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Monte Carlo Tests
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Monte Carlo Tests for Skewness and Kurtosis

Monte Carlo Tests for Skewness and Kurtosis

For the normal distribution, the third moment of the disturbances is 0,
and the fourth moment is 3σ4.

Define the normalized residuals ei as ûi/σ̂, where σ̂ =
√

SSR/N. The
sum of the e2

i is precisely N.

We can test for skewness using the test statistic

τsk =
1√
6N

N

∑
i=1

e3
i . (4)

We can test for excess kurtosis using the test statistic

τku =
1√
24N

N

∑
i=1

(e4
i − 3). (5)

Both τsk and τku are asymptotically distributed as N(0, 1). But skewed!
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Monte Carlo Tests for Skewness and Kurtosis

Because τsk and τku are asymptotically independent, we can test both
hypotheses jointly using the test statistic

τskku = τ2
sk + τ2

ku, (6)

which is asymptotically distributed as χ2(2).

All these test statistics are pivotal. If ϵ ≡ u/σ, they depend on y solely
through the vector

e ≡ (u⊤MXu/N)−1/2 MXu = (ϵ⊤MXϵ/N)−1/2 MXϵ. (7)

Under classical assumptions, ϵ is distributed as N(0, I).

For Monte Carlo tests, generate BN standard normal random variates
and form them into N-vectors ϵb for b = 1, . . . , B.

Then regress the ϵb on X, compute normalized residuals eb, and
calculate test statistics using (4), (5), or both of them plus (6).

These tests are asymptotically valid if regressors are not exogenous.
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Bootstrap Tests

Bootstrap Tests

We have seen how to perform a bootstrap test for θ = θ0 based on
bootstrap standard error se∗(θ̂) and assumption that θ̂

a∼ N
(
0, Var(θ̂)

)
.

Another (often better) approach is like Monte Carlo testing. Compare
test statistic τ with the distribution of B bootstrap test stats τ∗

b .

This sort of bootstrap test differs somewhat from Monte Carlo tests.
Monte Carlo test statistics are pivotal.
Bootstrap test statistics may or may not be asymptotically pivotal.
Monte Carlo tests are exact, provided α(B + 1) is an integer.
Bootstrap tests are almost never exact in finite samples.
Bootstrap tests based on asymptotically pivotal test statistics may
provide asymptotic refinements.

Both simulation results and higher-order theory suggest that this sort
of bootstrap test should work well in certain circumstances.
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Bootstrap Tests

We may hope that bootstrap tests will work well whenever:
1 The test statistic τ is close to being pivotal.
2 The bootstrap DGP does a good job of mimicking the true DGP

under the null hypothesis. This matters more if #1 does not hold.
3 The parameters of the bootstrap DGP are estimated under the null

hypothesis. This helps make #2 hold.
4 The distribution of the bootstrap statistics τ∗

b is (almost)
independent of τ. This is critical and often overlooked.

There are two ways to perform a bootstrap test:
Compute a bootstrap P value.
Compute a bootstrap critical value, say c∗α, and check whether τ is
more extreme than c∗α.

When α(B + 1) is an integer, both methods yield identical inferences.

Bootstrap P values are more informative unless τ is enormous.
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Bootstrap Tests

There are three main ways to compute bootstrap P values:

1. One-sided (upper tail) P value:

p̂∗(τ) =
1
B

B

∑
b=1

I(τ∗
b > τ). (8)

Use this for test statistics that are asymptotically χ2 or F.

We also want to use (8) for one-sided t tests against an alternative in
the upper tail.

2. Symmetric P value:

p̂∗(τ) =
1
B

B

∑
b=1

I(|τ∗
b | > |τ|). (9)

Use this for two-sided t tests when we believe that F(τ) is roughly
symmetric around zero.
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Bootstrap Tests

3. Equal-tail P value:

p̂∗(τ) =
2
B

min
( B

∑
b=1

I(τ∗
b ≤ τ),

B

∑
b=1

I(τ∗
b > τ)

)
(10)

Use this for two-sided t tests when we believe that F(τ) is not
symmetric around zero. Note the factor of 2!

Equal-tail and symmetric P values can differ greatly when τ is a t stat
based on a biased parameter estimate.

Perhaps use bootstrap bias correction (MacKinnon and Smith, 1998).

4. Bootstrap critical values:

If we sort the τ∗
b from smallest to largest, the bootstrap critical value c∗α

is simply number (1 − α)(B + 1).

For example, when α = .05 and B = 999, c∗α is number 950.

Rejecting when τ > c∗α is equivalent to rejecting when the one-sided P
value (8) is less than α.
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Bootstrap Tests

Be careful if the bootstrap DGP does not impose the null hypothesis!

Consider the bootstrap t statistic for testing θ = θ0:

t∗b =
θ̂∗b − θ0

s.e.(θ̂∗b )
. (11)

When the bootstrap DGP imposes the null, we would expect F(θ̂∗b ) to
be centered near E(θ̂ | θ = θ0).

But if the bootstrap DGP does not impose the null, it is going to be
centered near E(θ̂ | θ = θ̂).

In this case, we have to replace (11) by

t∗b =
θ̂∗b − θ̂

s.e.(θ̂∗b )
. (12)

If not, the bootstrap test will have no useful power.
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Bootstrap Confidence Intervals

Bootstrap Confidence Intervals

Inverting a bootstrap test yields a bootstrap confidence interval, or
bootstrap CI.

Ideally, we invert a bootstrap test based on a restricted bootstrap DGP
to obtain a restricted bootstrap confidence interval.

Doing this requires an iterative procedure. We need to find two
values of θ, say θ∗l and θ∗u.
The equal-tail bootstrap P value for each of them must equal α, or
the appropriate one-tail P value must equal α/2.
For each candidate value of, say, θu, we generate B bootstrap
samples under the null hypothesis that θ = θu and compute (10).
If P∗(θu) < α, then θu is too large. If P∗(θu) > α, it is too small.

We need to use a root-finding algorithm such as bisection that does
not use derivatives to find approximate value of θu.
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Bootstrap Confidence Intervals

Bisection Algorithm:

Define f (θ) as p̂∗(θ)− α, where p̂∗(θ) denotes the equal-tail P value
evaluated at θ. We want to find a value θ∗u for which f (θ∗u) = 0.

To start the process, we need two values of θ, say θa and θb, with
the properties that

f (θa) > 0 and f (θb) < 0. (13)

Since f (·) is non-increasing, it must be the case that θa < θb.
At each step, the bisection method finds a new value
θc = (θa + θb)/2 and computes f (θc).
Then θc replaces whichever of the previous values has f (θ) with
the same sign as f (θc). New interval is half the length of old one.
Eventually, when θa and θb are sufficiently close, the algorithm
terminates, and the final value of θc becomes θ∗u.

The grid bootstrap of Hansen (1999) is another way to obtain
restricted bootstrap confidence intervals.
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Bootstrap Confidence Intervals

Because p̂∗(θ) is based on a finite value of B, such as 999, it cannot be a
smooth function of θu. It is a step function.

There will typically exist no value θ∗u for which p̂∗(θ∗u) = α.
Instead, θ∗u will be the value where p̂∗(θ) < α for θ > θ∗u and
p̂∗(θ) > α for θ < θ∗u.

It is essential to use the same seed (and thus the same sequence of
random numbers) every time we calculate a bootstrap P value.

This applies to many simulation-based estimators.

Otherwise, p̂∗(θ) would take on different values each time it was
computed for the same value of θ, and the root-finding algorithm
would never converge.

Procedure for finding θ∗l is very similar to procedure for finding θ∗u.
Now define f (θ) as α − p̂∗(θ).
If p̂∗(θ) < α, then θ is too small. If p̂∗(θ) > α, then θ is too large.
Use bisection to find θ∗l , exactly as before.
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Studentized Bootstrap Confidence Intervals

Studentized Bootstrap Confidence Intervals

When a test statistic is pivotal, we can calculate just one set of τ∗
b , for

b = 1, . . . , B and use them to compute every bootstrap P value.

This will yield an exact confidence interval.

When τ is approximately pivotal, we can do the same thing, and with
luck the interval will be reasonably accurate.

For a studentized bootstrap confidence interval, the test statistic
τ(y, θ) is the t statistic (θ̂ − θ)/sθ .
Dividing an estimate by its standard error, in this case sθ , to form a
t statistic is often called studentization.
For a linear regression model, sθ could be a classical standard
error, a heteroskedasticity-robust standard error, or a
cluster-robust standard error.

These intervals are also called percentile-t confidence intervals or
bootstrap-t confidence intervals.
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Studentized Bootstrap Confidence Intervals

Studentized bootstrap confidence intervals are widely used. They
should work well if two assumptions hold:

1 The distribution of τ(θ, y) does not depend very strongly on how
y is generated.

2 The standard error of θ̂, sθ , is reasonably accurate and not very
correlated with θ̂.

Assumption #1 says that the t statistic is pivotal to a reasonably good
approximation.

Assumption #2 is very important, because sθ plays the same role in a
studentized bootstrap CI as it does in a conventional CI based on the
t(N − k) distribution.

If either part of #2 fails, the interval may have poor coverage.

The procedure for constructing a studentized bootstrap confidence
interval is quite easy.

Use any bootstrap DGP that does not impose a null hypothesis.
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Studentized Bootstrap Confidence Intervals

1 Calculate θ̂ and its standard error sθ , along with anything needed
for an unrestricted bootstrap DGP.

2 Generate B bootstrap samples y∗
b , b = 1, . . . , B, based on

unrestricted estimates. Choose B so that (α/2)(B+ 1) is an integer.
3 For each bootstrap sample, compute θ̂∗b and its standard error s∗b .

Then use these to compute the bootstrap t statistic

t∗b =
θ̂∗b − θ̂

s∗b
. (14)

4 Sort the t∗b from smallest to largest. Let c∗α/2 denote number
(α/2)(B + 1), and let c∗1−α/2 denote number (1 − α/2)(B + 1).

5 Construct the studentized bootstrap confidence interval[
θ̂ − sθ c∗1−α/2, θ̂ − sθ c∗α/2

]
. (15)

Notice that the upper-tail (lower-tail) quantile determines the
lower (upper) limit of the interval.
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Studentized Bootstrap Confidence Intervals

The studentized bootstrap CI (15) looks very much like a conventional
CI based on the t(N − k) distribution.

Bootstrap critical values are used instead of critical values from
t(N − k), which causes the interval to be asymmetric.
When θ̂ is biased, the interval will generally not be centered at θ̂.
In effect, it performs a sort of bias correction.

When we are interested in γ = g(θ), there are two obvious ways to
obtain studentized bootstrap confidence intervals.

1. Construct a studentized bootstrap interval for γ, using the delta
method to obtain sγ. The result would be[

γ̂ − sγ cγ∗
1−α/2, γ̂ − sγ cγ∗

α/2

]
, (16)

where cγ∗
α/2 and cγ∗

1−α/2 are the entries indexed by (α/2)(B + 1) and
(1 − α/2)(B + 1) in the sorted list of bootstrap t statistics for the
hypothesis that γ = g(θ̂).
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Studentized Bootstrap Confidence Intervals

2. Transform both limits of the studentized bootstrap interval (15). If
we did that, we would obtain the confidence interval[

g(θ̂ − sθ c∗1−α/2), g(θ̂ − sθ c∗α/2)
]
, (17)

where c∗α/2 and c∗1−α/2 are the appropriate entries in the sorted list of
bootstrap t statistics for the hypothesis that θ = θ̂.

The intervals (16) and (17) will be different, perhaps quite different if
the function g(·) is highly nonlinear in the neighborhood of θ̂.

There are many other ways to construct bootstrap confidence intervals.

If sθ is not available, we could use the bootstrap to estimate it and then
construct a studentized bootstrap CI. But this would involve a double
bootstrap, with B × B2 bootstrap samples.

Theory suggests that methods based directly on θ̂ and the θ̂∗b , i.e. not
based on asymptotically pivotal test statistics, should be avoided.

However, this advice may be wrong if s.e.(θ̂) is a poor estimator.

October 29, 2024 20 / 23



Power Loss from Bootstrapping

Power Loss from Bootstrapping

A bootstrap test may reject more or less often than the corresponding
asymptotic test; see Davidson and MacKinnon (2006).

Generally, bootstrap tests appear to have less power than the
corresponding asymptotic test, but only because the latter over-rejects.

If an asymptotic test under-rejects, the corresponding bootstrap
test will probably have more power.
A bootstrap test based on finite B must reject less often than one
based on B = ∞, athough the power loss is often negligible.
When B is finite, p̂∗ differs from p∗ because of random variation in
the bootstrap samples.
Adding randomness to p∗ is equivalent to adding randomness
to τ. In both cases, this reduces test power.

The power loss due to B being finite is O(1/B); see Davidson and
MacKinnon (2000).
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Power Loss from Bootstrapping

Consider zβ2 and tβ2 for the classical normal linear model.

zβ2 follows the N(0, 1) distribution, because σ is known. In contrast, tβ2

follows the t(N − k) distribution, because σ is estimated.

tβ2 is equal to zβ2 times the random variable σ/s, which is independent
of zβ2 and the same for both H0 and H1.

Multiplying zβ2 by σ/s adds independent random noise.
This requires us to use a larger critical value, which in turn causes
the test based on tβ2 to be less powerful than the test based on zβ2 .

The figure illustrates power loss in going from zβ2 to tβ2 , plus the
additional power loss from bootstrapping with finite B.

Power loss is very rarely a problem when B = 999, and it is never
a problem when B = 9,999.
For confidence intervals, randomness due to finite B shows up as
intervals that are longer than necessary.
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Power Loss from Bootstrapping
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