
Bootstrap Inference

Bootstrap Inference

Except for the classical normal linear model, the way to make
inferences has traditionally been to rely on asymptotic theory.

But this not does not always work well. It sometimes works
dreadfully! Bootstrap methods very often perform better.

All bootstrap methods involve generating a large number (B) of
simulated samples, called bootstrap samples.
The model is then estimated using every bootstrap sample, and
functions of the B bootstrap estimates are used for inference.

The term bootstrap, which was introduced by Efron (1979), is taken
from the phrase “to pull oneself up by one’s own bootstraps.”

Some authors refer to the bootstrap, but it is not a single procedure.

Bootstrap samples can be generated in many different ways, and there
are many procedures for making inferences from bootstrap estimates.
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Resampling

Resampling

The first method for generating bootstrap samples was to resample
the data (Efron, 1979). This assumes that they are i.i.d.

Suppose we have a sample of N observations xi in a vector x. Formally,
each bootstrap sample is a draw from the EDF of the xi:

x∗i ∼ EDF(x). (1)

Recall that the EDF assigns probability 1/N to each observation.

Metaphorically speaking, we throw all the xi into a hat and then
randomly pull them out one at a time, with replacement. This is a very
simple bootstrap DGP.

Each bootstrap sample contains some of the xi exactly once, some of
them more than once, and some of them not at all.

The probability that a bootstrap sample omits xi is quite large.
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Resampling

A given xi does not appear in a bootstrap sample with probability

Pr(#xi = 0) =
(

N − 1
N

)N

. (2)

A first-order Taylor expansion to the log of (2), which converges to a
constant as N → ∞, yields

log
(
Pr(#xi = 0)

)
= N log(1 − 1/N) ∼= N(−1/N) = −1. (3)

Therefore,

Pr(#xi = 0) ∼= exp(−1) = 1/(2.71828) = 0.36788. (4)

Any xi will be missing from almost 37% of the bootstrap samples.
Oddly, it will also appear exactly once with the same probability!

Resampling necessarily involves replacement. Without it, every
bootstrap sample would just be the actual sample reordered.
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Resampling

The total number of possible bootstrap samples is NN. Each occurs
with probability N−N.

The number of distinct samples is

2N−1CN =
(2N − 1)!

N!(N − 1)!
. (5)

This is usually a very big number, but not nearly as big as NN.

Here is how resampling from a sample xi, i = 1, . . . , N, works:
1 Divide the interval [0, 1] into N subintervals of length 1/N, and

number them from 1 to N.
2 Draw a random number η from the U(0, 1) distribution.
3 When η falls into the l th subinterval, put xl into the bootstrap

sample that is being created.
4 Repeat steps 2 and 3 above N times to generate a single bootstrap

sample of N observations.
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Resampling

Suppose that N = 10, and the ten observations yi are

6.45, 1.28, −3.48, 2.44, −5.17, −1.67, −2.03, 3.58, 0.74, −2.14.

Now suppose that, when forming one of the bootstrap samples, the
ten drawings from the U(0, 1) distribution happen to be

0.631, 0.277, 0.745, 0.202, 0.914, 0.136, 0.851, 0.878, 0.120, 0.259.

This implies that the ten index values are

7, 3, 8, 3, 10, 2, 9, 9, 2, 3.

Therefore, this bootstrap sample consists of

−2.03, −3.48, 3.58, −3.48, −2.14, 1.28, 0.74, 0.74, 1.28, −3.48.

Some of the observationss appear just once in this particular sample,
but numbers 2, 3, and 9 appear more than once, and numbers 1, 4, 5,
and 6 do not appear at all.
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Random Number Generators

Random Number Generators

A random number generator, or RNG, is a program for generating a
sequence of pseudo-random numbers, say ηj for j = 1, . . . , J.

Most RNGs generate the ηj from the U(0, 1) distribution. They can
then be transformed into drawings from other distributions.

An RNG starts with a (large) positive integer z0 called the seed, or
maybe a vector of seeds, to determine the sequence of ηj.
Most packages pick a seed based on the system clock if one is not
provided, so that different sequences are generated each time.
To use the same sequence of random numbers more than once, we
must give the RNG the same seed z0 every time it is called.

We can obtain standard normal random numbers by using the fact
that, if η is distributed as U(0, 1), then Φ−1(η) is distributed as N(0, 1).
However, much faster methods are available.
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Regression Models

Regression Models

Even for models as simple as the linear regression model, there are
many ways to specify a bootstrap DGP.

For a regression model, the oldest approach is the pairs bootstrap.

We resample the data, keeping the dependent and independent
variables together in pairs.

Each row [yi Xi] is implicitly assumed to be an independent random
drawing from an unknown multivariate distribution.

For the linear regression model, this amounts to forming the matrix

Z ≡ [y X], (6)

with typical row Zi = [yi Xi], and then resampling the rows of Z.

Every observation of every bootstrap sample is simply Z∗
j , for

j ∈ {1, . . . , N}, a randomly chosen row of the matrix Z.
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Regression Models

If y∗b and X∗b are the data for the b th bootstrap sample, then

β̂∗b =
(
(X∗b)⊤X∗b)−1

(X∗b)⊤y∗b. (7)

The pairs bootstrap can be used for any model where the data are
believed to be independent across observations.

This assumption would not be reasonable for data with any sort of
serial dependence or clustered disturbances.

It is natural to use pairs bootstrap with cross-section data, but it
can also be used with some models that use time-series data.
When regressors include lagged dependent variables, they are
treated in the same way as any other column of X.

Pairs bootstrap does not require that disturbances be homoskedastic.
Disturbances do not explicitly appear in the bootstrap DGP at all.

The pairs cluster bootstrap resamples by cluster instead of by
observation. The pigeonhole bootstrap resamples by cluster in two
clustering dimensions.
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Regression Models

In general, it is desirable to make the bootstrap DGP as close as
possible to the (unknown) true DGP.

In this respect, the pairs bootstrap has two big weaknesses:
1 It does not condition on the actual X matrix. Instead, each pairs

bootstrap sample has a different X∗ matrix.
2 It cannot impose the assumption that the null hypothesis is true.

Point 1 is important whenever the distribution of whatever we are
bootstrapping depends strongly on X.

Point 2 implies that bootstrap test statistics must be calculated for a
different null hypothesis than the actual test statistic.

Pairs bootstrap rarely performs as well as the best available bootstrap
method for any particular case, but it often performs acceptably.

It is most attractive for nonlinear models, where methods specifically
adapted to the linear regression model are not available.
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The Residual Bootstrap

The Residual Bootstrap

We can resample from (transformed) residuals. Let ú have typical
element úi = (N/(N − k))1/2 ûi. Then the unrestricted residual
bootstrap DGP is

y∗i = Xiβ̂ + u∗
i , u∗

i ∼ EDF(ú). (8)

This bootstrap DGP does not impose any restrictions on β. But when
we are testing restrictions, it is often good to impose them.

Suppose that β̃ and ũ denote restricted estimates and restricted
residuals. Then the restricted residual bootstrap DGP is

y∗i = Xiβ̃ + u∗
i , u∗

i ∼ EDF(ù). (9)

Here ù has typical element ùi = (N/(N − k1))
1/2 ũi when there are

k2 = k − k1 restrictions.
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The Residual Bootstrap

The factors (N/(N − k))1/2 and (N/(N − k1))
1/2 in ú and ù ensure that

the bootstrap disturbances have the correct expectation.

Other transformations of the ûi and ũi can also be used.
Unlike the pairs bootstrap, which is fully nonparametric, the
residual bootstrap is semiparametric.
The form of the regression function is treated as known, but the
distribution of the ui is treated as unknown.
However, every one of the ui is assumed to have the same
distribution. This rules out heteroskedasticity.

Like the s2(X⊤X)−1 covariance matrix estimator, the residual bootstrap
is now considered to be too restrictive for use with cross-section data.

HCCMEs have largely replaced the former, and the wild bootstrap
(next slide) has largely replaced the latter.

When there is assumed to be intra-cluster correlation, it is common to
combine a CRVE with the wild cluster bootstrap.
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Unlike the pairs bootstrap, which is fully nonparametric, the
residual bootstrap is semiparametric.
The form of the regression function is treated as known, but the
distribution of the ui is treated as unknown.

However, every one of the ui is assumed to have the same
distribution. This rules out heteroskedasticity.

Like the s2(X⊤X)−1 covariance matrix estimator, the residual bootstrap
is now considered to be too restrictive for use with cross-section data.

HCCMEs have largely replaced the former, and the wild bootstrap
(next slide) has largely replaced the latter.

When there is assumed to be intra-cluster correlation, it is common to
combine a CRVE with the wild cluster bootstrap.

October 22, 2024 11 / 21



The Residual Bootstrap

The factors (N/(N − k))1/2 and (N/(N − k1))
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1/2 in ú and ù ensure that

the bootstrap disturbances have the correct expectation.
Other transformations of the ûi and ũi can also be used.
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The Wild Bootstrap

The Wild Bootstrap

The wild bootstrap conditions each value y∗i not only on Xi but also on
the residual for observation i, which is either ũi or ûi.

For a linear regression model with heteroskedastic disturbances, the
wild bootstrap DGP is

y∗i = Xiβ̈ + u∗
i , u∗

i = v∗i üi. (10)

Here β̈ denotes either β̃ or β̂, üi denotes either ûi, ũi, or a transformed
version of one of them, and v∗i is an auxiliary random variable with
mean 0 and variance 1.

Because v∗i has variance 1, Var(u∗
i ) = Var(üi).

Thus, on average, u∗
i will be large for observations with large residuals

and small for ones with small residuals.

The wild bootstrap is a form of multiplier bootstrap.
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i = v∗i üi. (10)

Here β̈ denotes either β̃ or β̂, üi denotes either ûi, ũi, or a transformed
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The Wild Bootstrap

We saw when discussing heteroskedasticity-robust inference that

û2
i

a
= ω2

i + vi, (11)

where ω2
i is the variance of the i th disturbance.

This suggests that û2
i (and ü2

i ) can be used to estimate ω2
i . Of course, û2

i
is a very noisy estimator, but that does not matter asymptotically.

Ideally, v∗i should have mean 0, variance 1, and all higher moments
equal to 1. If so, u∗

i has same moments as üi.

Unfortunately, there exists no distribution with these properties!

The best choice usually seems to be the Rademacher distribution. It
takes on just two values, 1 and −1, each with equal probability.

The third and fourth moments of the Rademacher distribution are
0 and 1, respectively.
Because the third moment is 0, the u∗

i must be symmetric, which
seems like a serious restriction.
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i ) can be used to estimate ω2
i . Of course, û2
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i (and ü2

i ) can be used to estimate ω2
i . Of course, û2
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i ) can be used to estimate ω2
i . Of course, û2
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The Wild Bootstrap

Mammen (1993) suggested another two-point distribution that has a
third moment of 1, but its fourth moment is 2. It is

v∗i =

{
−(

√
5 − 1)/2 with prob. (

√
5 + 1)/(2

√
5),

(
√

5 + 1)/2 with prob. (
√

5 − 1)/(2
√

5).
(12)

Rademacher seems to outperform Mammen, even when the ui are
asymmetric; see Davidson and Flachaire (2008) and Djogbenou,
MacKinnon, and Nielsen (2019).

The N(0, 1) distribution has first three moments 0, 1, 0, but its
fourth moment is 3, which is much too large.
A better choice is probably the uniform U(−

√
3,
√

3) distribution,
which has third moment 0 and fourth moment 1.8.

It is common to replace üi in the bootstrap DGP (10) by ψ(üi), where
ψ(·) is a monotonically increasing transformation.

ψ(ûi) = ûi/(1 − hi) corresponds to HC3 (the jackknife)
ψ(ûi) = ûi/(1 − hi)

1/2 corresponds to HC2
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Bootstrap Standard Errors

Bootstrap Standard Errors

Having generated B vectors y∗b, what do we do with them?

The easiest, and oldest, method of bootstrap inference uses the
bootstrap samples to compute bootstrap standard errors.

The procedure for obtaining a bootstrap standard error for θ̂, an
estimate of the parameter θ, is very simple:

1 Specify a bootstrap DGP that does not impose a restriction on θ.
Use it to generate B bootstrap samples, y∗b, for b = 1, . . . , B.

2 For each y∗b, compute an estimate θ̂∗b .
3 Calculate θ̄∗, the sample mean of the θ̂∗b , and their sample variance

V̂ar∗(θ̂∗b ) =
1

B − 1

B

∑
b=1

(θ̂∗b − θ̄∗)2. (13)

Then se∗(θ̂) is simply the square root of V̂ar∗(θ̂∗b ).
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Bootstrap Standard Errors

This method provides an alternative to using asymptotic standard
errors for nonlinear transformations of parameters.

Suppose we wish to calculate the covariance matrix of the
vector γ̂ = g(θ̂), where g(·) is a possibly nonlinear transformation.

1 Specify an unrestricted bootstrap DGP, and use it to generate B
bootstrap samples, y∗b.

2 For each bootstrap sample, compute the vector θ̂∗b in the same
way as θ̂ was computed from the original sample y. Use it to
calculate γ̂∗b = g(θ̂∗b).

3 Compute the vector γ̄∗, which is the mean of the γ̂∗b vectors. Then
calculate the estimated bootstrap covariance matrix as

V̂ar∗(γ̂) =
1

B − 1

B

∑
b=1

(γ̂∗b − γ̄∗)(γ̂∗b − γ̄∗)⊤. (14)

Of course, this also works if γ(θ) = θ. So we can easily obtain V̂ar∗(θ̂).
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Bootstrap Standard Errors

Given se∗(θ̂), we can perform (approximate) t tests and compute
conventional-looking confidence intervals.

An approximate t statistic is

t∗(θ0) =
θ̂ − θ0

se∗(θ̂)
. (15)

We can pretend that this follows the N(0, 1) or t(N − k) distributions.

This test should work well if:
θ̂ − θ0 is approximately normally distributed with mean 0;

The variance of θ̂ − θ0 is approximately equal to V̂ar∗(θ̂∗b ).
In general, there is no theoretical reason to expect inference based on
(15) to be more or less accurate than asymptotic inference.

It depends on whether se∗(θ̂) is more or less accurate, and more or less
independent of θ̂, than an asymptotic standard error.
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Bootstrap Standard Errors

Once we have a bootstrap standard error se∗(θ̂), we can easily form
bootstrap confidence intervals.

A conventional bootstrap interval at level α is[
θ̂ − se∗(θ̂)z1−α/2, θ̂ + se∗(θ̂)z1−α/2

]
, (16)

where z1−α/2 denotes the 1 − α/2 quantile of the standard normal
distribution. When α = .05, z1−α/2 = 1.96.

We could also use a critical value from the t(N − k) distribution,
which would be more conservative.

The interval (16) may not be very accurate if the distribution of θ̂ − θ0
is not well approximated by the normal distribution with mean zero.

If θ̂ is biased, or its distribution is asymmetric or has thick tails, using
the 1 − α/2 quantile of the N(0, 1) distribution to obtain the limits of
the interval may cause it to undercover, perhaps severely.
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Bootstrap Standard Errors

Using bootstrap standard errors makes sense if asymptotic standard
errors are not available or may be seriously unreliable. It is good to
compute both to see how well they agree.

The assumption that θ̂ is unbiased and approximately normally
distributed may be uncomfortably strong.

More reliable tests and confidence intervals can be obtained if we can
compute a bootstrap test statistic, say τ∗

b , for every bootstrap sample.

This might (or might not) be (θ̂∗b − θ0)/s∗b , where s∗b is an
asymptotic standard error calculated at the same time as θ̂∗b .
We can then use the distribution of the τ∗

b to estimate the
distribution of the actual test statistic τ.

In theory, tests and confidence intervals based on comparing τ with
the τ∗

b may provide an asymptotic refinement.

If so, mistakes made by a bootstrap test are of lower order in N than
mistakes made by the asymptotic test on which it is based.
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Bootstrap Quantiles

Bootstrap Quantiles

It does not make sense to compute a bootstrap standard error for an
estimator θ̂ that does not have a finite variance.

In such cases, the bootstrap variance (13) will not converge.

Whenever θ̂ has a finite variance but an infinite fourth moment, the
bootstrap variance will probably converge very slowly.

In such cases, it is much better to estimate bootstrap quantiles than
anything based on sample moments of the bootstrap distribution.

A simple alternative to the bootstrap standard error is a function of the
rescaled interquartile range, or IQR, which is the difference between
the third and first quartiles of the θ̂∗b .

If we sort the θ̂∗b from smallest to largest, then the first quartile is
approximately number B/4, and the third quartile is approximately
number 3B/4, in the sorted list.
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Bootstrap Quantiles

If we choose B = 99, then they are numbers 25 and 75.

More generally, whenever B + 1 is divisible by 4, they are numbers
(B + 1)/4 and (3B + 1)/4.

Because the first and third quartiles of the standard normal
distribution are −0.6744898 and 0.6744898, the IQR for it is 1.349.

Thus ÎQR/1.349 is an estimator of σ(θ̂). It is not an efficient estimator
under normality, but it works far better than se∗(θ̂) when the bootstrap
distribution has thick tails. If efficiency is an issue, make B larger.

It is often a good idea to calculate ÎQR/1.349 and compare it with the
bootstrap standard error.

If bootstrap standard errors do not seem to converge at rate 1/B as B
increases, or if there is reason to suspect that θ̂ has thick tails, use
ÎQR/1.349 instead of the bootstrap standard error.

If desired, we can plot the EDF of the θ̂∗b , or a smoothed EDF, or
compute many quantiles, including extreme ones, to see what the
bootstrap distribution looks like.
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bootstrap standard error.

If bootstrap standard errors do not seem to converge at rate 1/B as B
increases, or if there is reason to suspect that θ̂ has thick tails, use
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