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Consider the linear regression model with exogenous regressors,

y = Xβ + u, E(u) = 0, E(uu⊤) = Ω, (1)

where Ω is an N × N matrix with i th diagonal element equal to ω2
i > 0

and all the off-diagonal elements equal to 0.

Since X is assumed to be exogenous, the expectations in (1) can be
treated as conditional on X.

We would get the same asymptotic results if, instead of treating X as
exogenous, we assumed that E(ui |Xi) = 0.

The disturbances in (1) are uncorrelated and have mean 0, but their
variances differ. They are said to be heteroskedastic.

We assume that the investigator knows nothing about the ω2
i . In other

words, the form of the heteroskedasticity is completely unknown.
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Whatever the form of Ω, the covariance matrix of β̂ is

E
(
(β̂ − β0)(β̂ − β0)

⊤) = (X⊤X)−1X⊤E(uu⊤)X(X⊤X)−1

= (X⊤X)−1X⊤ΩX(X⊤X)−1.
(2)

This is often called a sandwich covariance matrix, for obvious reasons.

If we knew the ω2
i , we could evaluate (2). In fact, we could do better

and obtain efficient estimates of β.

Observations with low variance convey more information than ones
with high variance, and so the former should be given greater weight.

But it is assumed that we do not know the ω2
i . We cannot hope to

estimate them consistently without making additional assumptions,
because there are N of them.

For the purposes of asymptotic theory, we wish to consider the
covariance matrix of N1/2(β̂ − β0), the limit of N times the matrix (2).
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The asymptotic covariance matrix of N1/2(β̂ − β0) is(
lim

N→∞

1
N

X⊤X
)−1(

lim
N→∞

1
N

X⊤ΩX
)(

lim
N→∞

1
N

X⊤X
)−1

. (3)

Under standard assumptions, the factor (lim N−1X⊤X)−1 tends to the
positive definite matrix S−1

X⊤X
.

To estimate S−1
X⊤X

, we can simply use the matrix (N−1X⊤X)−1 itself.

In a very famous paper, White (1980) showed that, under certain
conditions, the middle matrix can be estimated consistently by

1
N

X⊤Ω̂X, (4)

where Ω̂ is an inconsistent estimator of Ω.

The simplest version of Ω̂ is a diagonal matrix with i th diagonal
element equal to û2

i , the i th squared OLS residual.

October 22, 2024 3 / 15



Heteroskedasticity-Robust Inference

The matrix lim(N−1X⊤ΩX) is a k × k symmetric matrix. Therefore, it
has exactly (k2 + k)/2 distinct elements.

Since this number is independent of the sample size, the matrix can be
estimated consistently. Its jl th element is

lim
N→∞

(
1
N

N

∑
i=1

ω2
i xij xil

)
. (5)

This is estimated by the jl th element of (4). For the simplest version of
Ω̂, the estimator is

1
N

N

∑
i=1

û2
i xij xil. (6)

Because β̂ is consistent for β0, ûi must be consistent for ui, and û2
i is

therefore consistent for u2
i .

However, û2
i does not estimate ω2

i consistently.
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Asymptotically, expression (6) is equal to

1
N

N

∑
i=1

u2
i xij xil =

1
N

N

∑
i=1

(ω2
i + vi)xij xil (7)

=
1
N

N

∑
i=1

ω2
i xij xil +

1
N

N

∑
i=1

vi xij xil, (8)

where vi is defined to equal u2
i minus its mean of ω2

i .

Under suitable assumptions about the xij and the ω2
i , we can apply a

law of large numbers to the second term in (8).

Since E(vi) = 0, this term converges to 0, while the first term converges
to expression (5).

Because N−1 ∑N
i=1 û2

i xij xil
a
= N−1 ∑N

i=1 u2
i xij xil, these arguments imply

that (6) consistently estimates (5).
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In practice, of course, we omit the factors of 1/N. We simply use the
matrix

V̂arh(β̂) ≡ (X⊤X)−1X⊤Ω̂X(X⊤X)−1 (9)

directly to estimate the covariance matrix of β̂.

A more revealing way to write (9) is

V̂arh(β̂) ≡ (X⊤X)−1
( N

∑
i=1

û2
i X⊤

i Xi

)
(X⊤X)−1, (10)

where Xi is the i th row of X. This makes it clear that the N × N matrix
Ω̂ is never used.

The sandwich estimator (10) is a heteroskedasticity-consistent
covariance matrix estimator, or HCCME. It is valid for
heteroskedasticity of unknown form.

By taking square roots of the diagonal elements of (10), we can obtain
heteroskedasticity-robust standard errors.
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Asymptotic Theory for OLS

With heteroskedasticity of unknown form, Theorem 4.3 needs to be
replaced by

N1/2(β̂ − β0)
d−→ N

(
0, S−1

X⊤X

(
lim

N→∞

1
N

X⊤ΩX
)

S−1
X⊤X

)
(11)

and
lim

N→∞

1
N

V̂arh(β̂) = S−1
X⊤X

(
lim

N→∞

1
N

X⊤ΩX
)

S−1
X⊤X

. (12)

We conclude that β̂ is root-N consistent and asymptotically normal,
with (12) providing a consistent estimator of its covariance matrix.

Of course, all the factors of N are omitted when we actually make
inferences about β̂.

October 22, 2024 7 / 15



Alternative Forms of HCCME

Alternative Forms of HCCME

The original HCCME (10) of White (1980), often called HC0, uses
squared residuals to estimate the diagonal elements Ω.

But least-squares residuals tend to be too small. Better estimators
inflate the squared residuals (MacKinnon and White, 1985).

HC1: Use û2
i in Ω̂ and then multiply the entire matrix by the scalar

N/(N − k), for a standard degrees-of-freedom correction.

HC2: Use û2
i /(1 − hi) in Ω̂, where

hi ≡ Xi(X⊤X)−1X⊤
i (13)

is the i th diagonal element of the “hat” matrix PX .

Recall the result that, when Var(ui) = σ2 for all i, E(û2
i ) = σ2(1 − hi).

Therefore, the ratio of û2
i to 1 − hi would have expectation σ2 if the

disturbances were homoskedastic.
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HC3: Use û2
i /(1 − hi)

2 in Ω̂. This is a computationally efficient
approximation to a jackknife estimator.

A jackknife estimator omits one observation at a time when obtaining
estimates and fitted values.

The usual way to define a jackknife covariance matrix is

V̂arJK(β̂) =
N − 1

N

N

∑
i=1

(
β̂(i) − β̂

)(
β̂(i) − β̂

)⊤, (14)

where β̂(i) is the vector of estimates when the i th observation is
omitted. We can also omit groups of observations.

It is not at all obvious that (14) is numerically equal to

N − 1
N

(X⊤X)−1

(
N

∑
i=1

û2
i

(1 − hi)2 X⊤
i Xi

)
(X⊤X)−1, (15)

but it can be verified numerically.
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MacKinnon and White (1985) actually proposed a slightly more
complicated version of (15), based on a different version of (14),

V̂arJK(β̂) =
N − 1

N

N

∑
i=1

(
β̂(i) − β̄

)(
β̂(i) − β̄

)⊤, (16)

where β̄ = N−1 ∑N
i=1 β̂(i), the mean of the omit-one estimates.

Dividing by (1 − hi)
2 actually seems to overcorrect the residuals.

But observations with large variances often tend to have residuals that
are very much too small. Thus, HC3 may be attractive if large
variances are associated with large values of hi.

Inferences based on any HCCME, especially HC0 and HC1, may be
seriously inaccurate even when the sample size is moderately large if
some observations have much higher leverage than others.

By default, Stata uses HC1 with the “robust” and “vec(robust)”
options. But “vce(hc2)” and “vce(hc3)” provide HC2 and HC3.
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When Does Heteroskedasticity Matter?

Even when the disturbances are heteroskedastic, we do not necessarily
have to use an HCCME.

Consider the jl th element of N−1X⊤ΩX, which is

1
N

N

∑
i=1

ω2
i xij xil. (17)

If the limit as N → ∞ of the average of the ω2
i exists and is denoted σ2,

then expression (17) can be rewritten as

σ2 1
N

N

∑
i=1

xij xil +
1
N

N

∑
i=1

(ω2
i − σ2)xij xil. (18)

The first term here is just the jl th element of σ2 N−1X⊤X.
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If it happens that

lim
N→∞

1
N

N

∑
i=1

(ω2
i − σ2)xij xil = 0 (19)

for j, l = 1, . . . , k, then we find that

lim
N→∞

1
N

X⊤ΩX = σ2 lim
N→∞

1
N

X⊤X. (20)

If so, the asymptotic covariance matrix of N1/2(β̂ − β0) is just(
lim

N→∞

1
N

X⊤X
)−1

σ2
(

lim
N→∞

1
N

X⊤X
)(

lim
N→∞

1
N

X⊤X
)−1

= σ2S−1
X⊤X

. (21)

The usual OLS estimate of σ2 is s2 =
(
1/(N − k)

)
∑N

i=1 û2
i .
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If we assume that we can apply a law of large numbers, the probability
limit of N−1 ∑N

i=1 û2
i is

lim
N→∞

1
N

N

∑
i=1

ω2
i = σ2. (22)

In this special case, the usual OLS covariance matrix estimator
s2(X⊤X)−1 is valid asymptotically.

If we are estimating a sample mean, then X = ι, and

1
N

N

∑
i=1

ω2
i xij xil =

1
N

N

∑
i=1

ω2
i ι2i =

1
N

N

∑
i=1

ω2
i → σ2 as N → ∞. (23)

Thus (19) holds, and we do not have to worry about heteroskedasticity.

Only heteroskedasticity related to the squares and cross-products of
the xij affects the validity of the usual OLS covariance matrix estimator.
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HAC Covariance Matrix Estimation

The assumption that the matrix Ω is diagonal is what makes it
possible to estimate N−1X⊤ΩX consistently and obtain an HCCME,
even though Ω itself cannot be estimated consistently.

The matrix N−1X⊤ΩX can sometimes be estimated consistently for a
model that uses time-series data when the disturbances are correlated
across time periods.

Observations that are close to each other may be strongly correlated,
but observations that are far apart may be uncorrelated or nearly so.

If so, only the elements of Ω that are on or close to the principal
diagonal are large.

We may be able to obtain an estimate of the covariance matrix of the
parameter estimates that is heteroskedasticity and autocorrelation
consistent, or HAC.
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Cluster-Robust Inference

Data are often collected at the individual level, but each observation is
associated with a higher-level entity, such as a city, state, province, or
country, a classroom or school, a hospital, or perhaps a time period.

Thus each observation belongs to a cluster, and the regression
disturbances may be correlated within the clusters.

It seems natural to allow for any form of correlation within each of G
clusters, while assuming no correlation across clusters.

The resulting covariance matrix is called a cluster-robust variance
estimator or CRVE.

Instead of presenting an elementary exposition based on ETM2, I will
present a more detailed one based on:

James G. MacKinnon, Morten Ø. Nielsen, and Matthew D. Webb,
“Cluster-robust inference: A guide to empirical practice.” Journal of
Econometrics, 2023, 232, 272–299.
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