Confidence Intervals

In order to construct a **confidence set**, which often takes the form of a **confidence interval**, or **CI**, we must (perhaps implicitly) invert a test.

We need a suitable **family of tests** for a set of point null hypotheses about a parameter, say θ .

- If we use a t test for the hypothesis that $\theta = \theta_0$ for any specified θ_0 , then we have a family of t tests indexed by θ_0 .
- A confidence set contains all values θ_0 for which the hypothesis that $\theta = \theta_0$ is not rejected by the appropriate test in the family.
- When the tests are at level α , we obtain an interval at **confidence level** 1α . Popular levels are .90, .95, and .99.

Let $\tau(y, \theta_0)$ denote a test statistic for the hypothesis that $\theta = \theta_0$.

Assume for now that $\tau(y, \theta_0) > 0$, like *F* and χ^2 statistics.

For each θ_0 , the test compares $\tau(y, \theta_0)$ with c_α , the level α critical value, which is the $1 - \alpha$ **quantile** of some distribution.

This quantile is 3.8415 when $\tau \sim \chi^2(1)$ and $\alpha = 0.05$.

By the definition of c_{α} ,

$$\Pr(\tau(\boldsymbol{y}, \theta_0) \le c_{\alpha}) = 1 - \alpha. \tag{1}$$

For θ_0 to belong to the CI, it is necessary and sufficient that

$$\tau(\boldsymbol{y},\theta_0) \le c_{\alpha}. \tag{2}$$

The limits of the CI can be found by solving for θ the equation

$$\tau(\boldsymbol{y},\theta) = c_{\alpha}.\tag{3}$$

This equation normally has two solutions. One solution is the upper limit, θ_{ν} , and the other is the lower limit, θ_{l} .

We can write the interval as $[\theta_l, \theta_u]$.

Confidence intervals are random. The probability that the interval covers the true parameter value is called the **coverage probability**, or just the **coverage**, of the interval.

Confidence intervals may be **exact** (if based on an exact test) or **approximate** (if based on a test that is not exact).

- For an exact interval, the coverage is precisely the level of the interval, that is, 1α .
- For an approximate interval, the coverage may be larger or smaller than 1α .
- An approximate interval may over-cover, or under-cover, in both tails. Or it may over-cover in one tail and under-cover in the other.
- If a test over-rejects, then intervals based on it will under-cover.
- If a test under-rejects, then intervals based on it will over-cover.
- The most popular approximate intervals are usually based on either asymptotic theory or the bootstrap.

Exact Confidence Intervals

When every test in the family of tests is exact at level α , the coverage of the confidence interval (or confidence set) is exactly $1 - \alpha$.

Since θ_0 belongs to the confidence interval if and only if (2) holds, the confidence interval contains the true parameter value θ_0 with probability exactly equal to $1 - \alpha$.

If F(x) is the CDF of X, and if $f(x) \equiv F'(x)$ exists and is strictly positive everywhere, then q_{α} , the α quantile of F, satisfies $F(q_{\alpha}) = \alpha$ for $0 \le \alpha \le 1$.

If the PDF is strictly positive, F is strictly increasing. Therefore, the inverse function $F^{-1}(\alpha)$ exists, and $q_{\alpha} = F^{-1}(\alpha)$. The function $F^{-1}(\alpha)$ is called the **quantile function**.

If *F* is not strictly increasing, or *f* does not exist (e.g. discrete distribution), then the α quantile may not exist, or it may not be uniquely defined, for every value of α .

Various quantiles of interest:

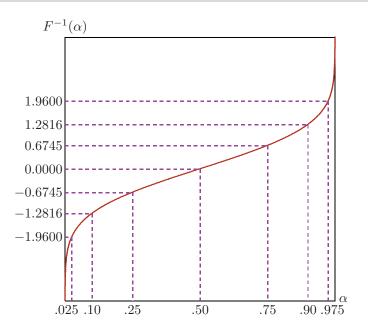
- The .5 quantile is called the **median**.
- For $\alpha = .25$, .5, and .75, the corresponding quantiles are called **quartiles**. For example, the .75 quantile is the **third quartile**.
- For $\alpha = .2$, .4, .6, and .8, they are called **quintiles**.
- For $\alpha = i/10$ with $1 \le i \le 9$, they are called **deciles**.
- For $\alpha = i/100$ with $1 \le i \le 99$, they are called **centiles**.

The quantile function of the standard normal distribution is shown in the following figure.

It is just the standard normal CDF rotated by 90 degrees, so that α is on the horizontal axis and the quantiles are on the vertical axis.

Finding the critical values for an interval at level $1 - \alpha$ based on the normal distribution requires us to find $\Phi^{-1}(1 - \alpha/2)$ and $\Phi^{-1}(\alpha/2) = -\Phi^{-1}(1 - \alpha/2)$.

For
$$\alpha = .05$$
, $\Phi^{-1}(\alpha/2) = -1.96$ and $\Phi^{-1}(1 - \alpha/2) = 1.96$.



Asymptotic Confidence Intervals

In principle, $\tau(y, \theta_0)$ can be any sort of test statistic.

Ideally, we know its finite-sample distribution. If not, then we at least know its asymptotic distribution.

Suppose that

$$\tau(\boldsymbol{y}, \theta_0) \equiv \left(\frac{\hat{\theta} - \theta_0}{s_{\theta}}\right)^2,\tag{4}$$

where $\hat{\theta}$ is an estimate of θ , and s_{θ} is the corresponding standard error, that is, an estimate of the standard deviation of $\hat{\theta}$.

 $\tau(y, \theta_0)$ is the square of the t statistic for the hypothesis that $\theta = \theta_0$.

Under standard conditions, $\tau(\boldsymbol{y}, \theta_0) \stackrel{a}{\sim} \chi^2(1)$.

The asymptotic critical value c_{α} is the $1 - \alpha$ quantile of the $\chi^2(1)$ distribution.

To find the asymptotic interval for θ based on (4), we need to solve

$$\left(\frac{\hat{\theta} - \theta}{s_{\theta}}\right)^2 = c_{\alpha}.\tag{5}$$

Taking the square root of both sides and multiplying by s_{θ} then gives

$$|\hat{\theta} - \theta| = s_{\theta} c_{\alpha}^{1/2}. \tag{6}$$

There are two solutions to this equation. These are

$$\theta_l = \hat{\theta} - s_\theta c_\alpha^{1/2}$$
 and $\theta_u = \hat{\theta} + s_\theta c_\alpha^{1/2}$. (7)

Thus the asymptotic $1 - \alpha$ confidence interval for θ is

$$\left[\hat{\theta} - s_{\theta} c_{\alpha}^{1/2}, \ \hat{\theta} + s_{\theta} c_{\alpha}^{1/2}\right]. \tag{8}$$

The lower limit θ_l is $\hat{\theta} - s_{\theta} c_{\alpha}^{1/2}$, and the upper limit θ_u is $\hat{\theta} + s_{\theta} c_{\alpha}^{1/2}$.

For $\alpha = .05$, the $1 - \alpha$ quantile of the $\chi^2(1)$ distribution is 3.8415. Since $\sqrt{3.8415} = 1.9600$, the confidence interval given by (8) becomes

$$\left[\hat{\theta} - 1.96s_{\theta}, \ \hat{\theta} + 1.96s_{\theta}\right]. \tag{9}$$

The construction of this interval is illustrated in the next figure.

The same interval arises if we invert the asymptotic t statistic $(\hat{\theta} - \theta_0)/s_\theta$ and use the N(0,1) distribution for a two-tailed test.

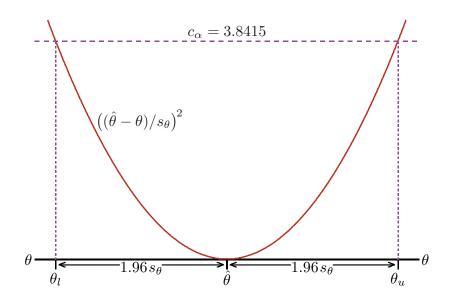
The critical values for such a test are the $\alpha/2$ and $1 - \alpha/2$ quantiles of the distribution. For the N(0,1) distribution, these are $z_{\alpha/2}$ and $z_{1-\alpha/2}$.

 $z_{\alpha/2}$ is negative, since $\alpha/2 < 1/2$, and the median of the N(0,1) distribution is 0. By symmetry, it is easy to see that $z_{\alpha/2} = -z_{1-\alpha/2}$.

Thus the CI can can be written in two different ways:

$$\left[\hat{\theta} + s_{\theta} z_{\alpha/2}, \ \hat{\theta} - s_{\theta} z_{\alpha/2}\right]$$
 and $\left[\hat{\theta} - s_{\theta} z_{1-\alpha/2}, \ \hat{\theta} + s_{\theta} z_{1-\alpha/2}\right]$. (10)

When $\alpha = .05$, we obtain the interval (9), since $z_{.025} = -1.96$ and $z_{.975} = 1.96$.



Asymmetric Confidence Intervals

The confidence interval (10) is **symmetric**, because θ_l is as far below $\hat{\theta}$ as θ_u is above it.

This is the case because the N(0,1) distribution is symmetric.

We can obtain an **asymmetric confidence interval** if we construct a confidence interval based on a two-tailed test when the distribution of the test statistic is not symmetric.

If we define the rejection region so that there is a probability mass of $\alpha/2$ in each tail, we obtain an **equal-tailed confidence interval**.

Two critical values are needed: The lower one, c_{α}^{-} , is the $\alpha/2$ quantile of the distribution, and the upper one, c_{α}^{+} , is the $1 - \alpha/2$ quantile.

- Any value θ lies within the interval whenever $\tau(y,\theta) \geq c_{\alpha}^{-}$ and $\tau(y,\theta) \leq c_{\alpha}^{+}$.
- Values of θ for which $\tau(y, \theta)$ is below c_{α}^- or above c_{α}^+ lie outside the interval.

Exact Confidence Intervals for Regression Coefficients

Consider the classical normal linear model, where β has been partitioned as $[\beta_1 \vdots \beta_2]$, with β_1 a (k-1)-vector and β_2 a scalar.

If s_2 is the OLS standard error for $\hat{\beta}_2$, the t statistic for $\beta_2 = \beta_2^0$ is

$$\frac{\hat{\beta}_2 - \beta_2^0}{s_2} \sim t(N - k). \tag{11}$$

Since any DGP in the model satisfies $\beta_2 = \beta_2^0$ for some β_2^0 ,

$$\Pr\left(t_{\alpha/2} \le \frac{\hat{\beta}_2 - \beta_2^0}{s_2} \le t_{1-\alpha/2}\right) = 1 - \alpha,\tag{12}$$

where $t_{\alpha/2}$ and $t_{1-\alpha/2}$ are the $\alpha/2$ and $1-\alpha/2$ quantiles of the t(N-k) distribution.

October 4, 2024

We can use (12) to find a $1 - \alpha$ confidence interval for β_2 . The l.h.s. is

$$\Pr(s_2 t_{\alpha/2} \le \hat{\beta}_2 - \beta_2^0 \le s_2 t_{1-\alpha/2}) \tag{13}$$

$$= \Pr(-s_2 t_{\alpha/2} \ge \beta_2^0 - \hat{\beta}_2 \ge -s_2 t_{1-\alpha/2})$$
 (14)

$$= \Pr(\hat{\beta}_2 - s_2 t_{\alpha/2} \ge \beta_2^0 \ge \hat{\beta}_2 - s_2 t_{1-\alpha/2}). \tag{15}$$

Therefore, the confidence interval we are seeking is

$$[\hat{\beta}_2 - s_2 t_{1-\alpha/2}, \ \hat{\beta}_2 - s_2 t_{\alpha/2}].$$
 (16)

This looks odd, because the upper limit is obtained by subtracting something from $\hat{\beta}_2$.

But what is subtracted is negative, because $t_{\alpha/2} < 0$. We could instead have added $s_2 t_{1-\alpha/2}$ and obtained the same interval.

The lower and upper limits of (16) depend, respectively, on the upper-tail and lower-tail quantiles of the t(N-k) distribution.

This fact matters for asymmetric confidence intervals.

Because the t distribution is symmetric, the interval (16) is the same as

$$[\hat{\beta}_2 - s_2 t_{1-\alpha/2}, \ \hat{\beta}_2 + s_2 t_{1-\alpha/2}].$$
 (17)

For concreteness, suppose that $\alpha = .05$ and N - k = 32. In this special case, $t_{1-\alpha/2} = t_{.975} = 2.037$.

The .95 confidence interval based on (17) extends from 2.037 standard errors below $\hat{\beta}_2$ to 2.037 standard errors above it.

We obtained the interval (16) by starting from the t statistic (11) and using the Student's t(N-k) distribution. Such an interval gets longer, for the same standard error, as N-k decreases.

We would have obtained precisely the same interval if we had started from the square of (11) and used the F(1, N - k) distribution.

- If we invert a test with the correct size, we obtain a CI with the correct coverage.
- The more powerful is the test, the shorter is the interval.

Confidence Regions

The **confidence region** for a set of k parameters, say the components of a k-vector θ , is often the k-dimensional analog of an ellipse constructed by inverting a joint test based on the F or χ^2 distributions.

For every point θ_0 in the confidence region, the joint hypothesis that $\theta = \theta_0$ is not rejected at level α .

A confidence region covers the true values of the parameter vector θ $100(1-\alpha)\%$ of the time, either exactly or approximately.

Suppose we are interested in θ_2 , a subvector of θ . The k_2 -vector of parameter estimates $\hat{\theta}_2$ has covariance matrix estimated by $\widehat{\text{Var}}(\hat{\theta}_2)$.

The Wald statistic

$$(\hat{\boldsymbol{\theta}}_2 - \boldsymbol{\theta}_2^0)^{\top} (\widehat{\operatorname{Var}}(\hat{\boldsymbol{\theta}}_2))^{-1} (\hat{\boldsymbol{\theta}}_2 - \boldsymbol{\theta}_2^0)$$
(18)

can be used to test the joint null hypothesis that $\theta_2 = \theta_2^0$.

Let c_{α} denote the $1-\alpha$ quantile of the $\chi^{2}(k_{2})$ distribution. Then an approximate $1-\alpha$ confidence region is the set of all θ_{0} such that

$$(\hat{\boldsymbol{\theta}}_2 - \boldsymbol{\theta}_2^0)^{\top} (\widehat{\operatorname{Var}}(\hat{\boldsymbol{\theta}}_2))^{-1} (\hat{\boldsymbol{\theta}}_2 - \boldsymbol{\theta}_2^0) \le c_{\alpha}. \tag{19}$$

This **asymptotic confidence region** is elliptical or ellipsoidal.

Consider the classical normal linear model

$$y = X_1 \beta_1 + X_2 \beta_2 + u, \quad u \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}), \tag{20}$$

where β_1 and β_2 are a k_1 -vector and a k_2 -vector with $k = k_1 + k_2$. This can be rewritten as

$$y - X_2 \beta_2^0 = X_1 \beta_1 + X_2 \gamma + u, \quad u \sim N(0, \sigma^2 I),$$
 (21)

where $\gamma = \beta_2 - \beta_2^0$. Testing $\gamma = \mathbf{0}$ is equivalent to testing $\beta_2 = \beta_2^0$.

The *F* statistic is

$$\frac{(\hat{\beta}_2 - \beta_2^0)^\top X_2^\top M_1 X_2 (\hat{\beta}_2 - \beta_2^0) / k_2}{y^\top M_X y / (N - k)}.$$
 (22)

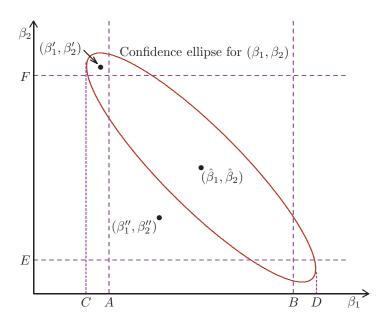
This is just $1/k_2$ times the Wald statistic (18), where β replaces θ and

$$\widehat{\operatorname{Var}}(\hat{\boldsymbol{\beta}}_2) = s^2 (\boldsymbol{X}_2^{\top} \boldsymbol{M}_1 \boldsymbol{X}_2)^{-1}. \tag{23}$$

If c_{α} denotes the $1-\alpha$ quantile of the $F(k_2, N-k)$ distribution, the $1-\alpha$ confidence region is the set of all β_2^0 for which

$$(\hat{\beta}_2 - \beta_2^0)^{\top} X_2^{\top} M_1 X_2 (\hat{\beta}_2 - \beta_2^0) \le c_{\alpha} k_2 s^2.$$
 (24)

Because the left-hand side of (24) is quadratic in β_2^0 , the confidence region is the interior of an ellipse for $k_2 = 2$ and the interior of a k_2 -dimensional ellipsoid for $k_2 > 2$.



- Points like (β_1'', β_2'') lie outside the confidence ellipse.
- Points like (β'_1, β'_2) are contained in the ellipse but lie outside one or both of the confidence intervals.
- Negative slope arises when regressors are positively correlated.
 Think of a model for daily electricity demand in the summer, using temperature and humidity as regressors.
- When correlation between parameter estimates is zero, axes of the ellipse are parallel to the coordinate axes.
- When estimates are positively (negatively) correlated, ellipse is oriented from lower left to upper right (upper left to lower right).
- Variances of parameter estimates determine height and width.
- If the variances are equal and the correlation is zero, then the ellipse is a circle.
- The infinitely high rectangle bounded by the vertical lines through A and B must have probability mass 1α .