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Consider the classical normal linear model

y = Xβ + u, u ∼ N(0, σ2I), (1)

where X is N × k, and u is statistically independent of X.

In other words, all of the regressors in X are exogenous.

To test a single restriction, partition β as [β1
.... β2], where β1 is a

(k − 1)-vector and β2 is a scalar.

When X is partitioned conformably with β, (1) can be rewritten as

y = X1β1 + β2x2 + u, u ∼ N(0, σ2I), (2)

where X1 is N × (k − 1) and x2 is an N-vector, with X = [X1 x2].
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By the FWL Theorem, the OLS estimate of β2 from (2) is the same as
the OLS estimate from the FWL regression

M1y = β2M1x2 + residuals, (3)

where M1 ≡ I − X1(X⊤
1 X1)

−1X⊤
1 is the matrix that projects on to

S⊥(X1). Here M1 is short for MX1 .

To test the hypothesis that β2 = β0
2, we have to subtract β0

2 from β̂2 and
divide by the square root of the variance, where

β̂2 =
x⊤2 M1y
x⊤2 M1x2

and Var(β̂2) = σ2(x⊤2 M1x2)
−1. (4)

Of course, the variance here depends on σ2, which is unknown. In
practice, we will need to replace it by s2.

But let us assume, for a little while, that we know σ2. This will yield a
test statistic that is usually infeasible.
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For a test of β2 = 0, the infeasible test statistic is

zβ2 ≡
x⊤2 M1y

σ(x⊤2 M1x2)1/2
. (5)

If the data are actually generated by the model (2) with β2 = 0, then

M1y = M1(X1β1 + u) = M1u. (6)

Therefore, the right-hand side of equation (5) becomes

x⊤2 M1u
σ(x⊤2 M1x2)1/2

. (7)

We want to show that zβ2 ∼ N(0, 1). This requires that the numerator
of (7) be normally distributed with variance equal to the square of the
denominator.
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The numerator is just a linear combination of the components of u,
which is multivariate normal, so zβ2 must be normally distributed.

The variance of the numerator of (7) is

E(x⊤2 M1uu⊤M1x2) = x⊤2 M1 E(uu⊤)M1x2 (8)

= x⊤2 M1σ2 IM1x2 = σ2x⊤2 M1x2. (9)

Since the denominator of (7) is just the square root of the variance of
the numerator, zβ2 ∼ N(0, 1) under the null hypothesis.

In practice, of course, we very rarely know σ2.
We need to replace σ in (5) by s, the standard error of (2).
Recall that s2 = y⊤MX y/(N − k) = SSR/(N − k).
Because s2 is random and not equal to σ2, the t statistic does not
follow the N(0, 1) distribution in finite samples.
Instead, it follows the t(N − k) distribution.
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tβ2 ≡
x⊤2 M1y

s(x⊤2 M1x2)1/2
=

(
y⊤MX y
N − k

)−1/2 x⊤2 M1y
(x⊤2 M1x2)1/2

. (10)

If a test statistic has the t(N − k) distribution, we can write it as the
ratio of a standard normal variable z to the square root of ζ/(N − k),
where ζ is independent of z and distributed as χ2(N − k).

The t statistic (10) can be rewritten as

tβ2 = (σ/s)zβ2 =
zβ2(

y⊤MX y/((N − k)σ2)
)1/2 . (11)

We have already shown that zβ2 ∼ N(0, 1). It remains to show that
y⊤MX y/σ2 ∼ χ2(N − k) and that the numerator and denominator of
(11) are independent.

Under any DGP that belongs to (2),

y⊤MX y
σ2 =

u⊤MX u
σ2 = ϵ⊤MXϵ, where ϵ ≡ u/σ ∼ N(0, I). (12)

September 24, 2024 5 / 15



Exact Tests in the Classical Normal Linear Model

Since MX is a projection matrix with rank N − k, ϵ⊤MXϵ in (12) is
distributed as χ2(N − k) by part 2 of Theorem 4.1.

Note that ϵ⊤MXϵ depends on y only through MX y.

zβ2 depends on y only through PX y, since

x⊤2 M1y = x⊤2 PXM1y = x⊤2 (PX − PXP1)y = x⊤2 M1PX y. (13)

The first equality uses the fact that x2 ∈ S(X). The third equality uses
the fact that PXP1 = P1PX .

We know that MX y = MX u and PX y = Xβ + PX u.

The N ×N matrix of covariances of the components of PX u and MX u is

E(PX uu⊤MX) = σ2PX MX = O, (14)

because PX and MX are complementary projections.
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The vectors PX u and MX u have zero covariance because they lie
in orthogonal subspaces, namely, the images of PX and MX .
Zero covariance implies that PX u and MX u are independent, since
they are multivariate normal.
Even though the numerator and denominator of (11) both depend
on y, they are independent.

Conclusion: The t statistic for β2 = 0 in (2) follows the t(N − k)
distribution under the null hypothesis.

One-tailed and two-tailed tests based on tβ2 are almost the same
as ones based on zβ2 .
We use the t(N − k) distribution instead of the standard normal
distribution to compute P values or critical values.
Both critical values and P values based on t(N − k) will be larger
than ones based on N(0, 1), because the randomness in s causes
tβ2 to be more spread out than zβ2 .
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Tests of Several Restrictions

Suppose there are r restrictions, with r ≤ k, of the form β2 = 0. The
alternative hypothesis is the model

H1 : y = X1β1 + X2β2 + u, u ∼ N(0, σ2I). (15)

Here X1 is N × k1, X2 is N × k2, β1 is a k1-vector, β2 is a k2-vector,
k = k1 + k2, and the number of restrictions r = k2.

The null hypothesis is the model

H0 : y = X1β1 + u, u ∼ N(0, σ2I). (16)

If USSR = y⊤MX y, from (15), and RSSR = y⊤M1y, from (16), then the F
statistic, which is distributed as F(r, N − k), is

Fβ2 ≡
(RSSR − USSR)/r

USSR/(N − k)
. (17)
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The USSR can be computed from the FWL regression

M1y = M1X2β2 + residuals. (18)

The TSS from this regression is y⊤M1y, the ESS is y⊤M1PM1X2M1y, and
so the SSR is

USSR = y⊤M1y − y⊤M1X2(X⊤
2 M1X2)

−1X⊤
2 M1y. (19)

Therefore,

RSSR − USSR = y⊤M1X2(X⊤
2 M1X2)

−1X⊤
2 M1y, (20)

and the F statistic (17) can be written as

Fβ2 =
y⊤M1X2(X⊤

2 M1X2)−1X⊤
2 M1y/r

y⊤MX y/(N − k)
. (21)
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In general, MX y = MX u. Under the null, M1y = M1u, and so

Fβ2 =
ϵ⊤M1X2(X⊤

2 M1X2)−1X⊤
2 M1ϵ/r

ϵ⊤MXϵ/(N − k)
, (22)

where, as before, ϵ ≡ u/σ.

The denominator of (22) is 1/(N − k) times something that is
distributed as χ2(N − k).

The quadratic form in the numerator is ϵ⊤PM1X2 ϵ. It must be
distributed as χ2(r) because PM1X2 is a projection matrix with rank r.

The two χ2 random variables are independent, because MX and PM1X2

project on to mutually orthogonal subspaces:

MX M1X2 = MX(X2 − P1X2) = O. (23)

Thus (22) is distributed as F(r, N − k) under H0.
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When there is just one restriction, the F statistic (21) is equal to the
square of the t statistic (10).

The numerator of (21) simplifies to

y⊤M1x2(x⊤2 M1x2)
−1x⊤2 M1y =

(x⊤2 M1y)2

x⊤2 M1x2
, (24)

which is the square of the second factor in (10). The square root of the
denominator of (21) is (

y⊤MX y
N − k

)1/2

. (25)

Combining the signed square root of (24) with (25), we get (10):

√
Fβ2 =

(
y⊤MX y
N − k

)−1/2 x⊤2 M1y
(x⊤2 M1x2)1/2

. (26)
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1. Testing Slope Coefficients in a Classical Normal Linear Model

The null hypothesis H0 is that β2 = 0 in the model

y = β1ι + X2β2 + u, u ∼ N(0, σ2I), (27)

where ι is an N-vector of 1s and X2 is N × (k − 1).

The test statistic (21) becomes

Fβ2 =
y⊤MιX2(X⊤

2 MιX2)−1X⊤
2 Mιy/(k − 1)(

y⊤Mιy − y⊤MιX2(X⊤
2 MιX2)−1X⊤

2 Mιy
)
/(N − k)

. (28)

The matrix expression in the numerator here is just the ESS from the
FWL regression

Mιy = MιX2β2 + residuals. (29)
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The matrix expression in the denominator of (28) is the TSS from this
regression, minus the ESS.

Since the centered R2 from (27) is just the ratio of ESS to TSS,

Fβ2 =
N − k
k − 1

× R2
c

1 − R2
c

. (30)

But you should never compute Fβ2 in this way!

2. Testing the Equality of Two Parameter Vectors

We can often divide a sample into two, or possibly more than two,
subsamples.

We can ask whether a linear regression model has the same coefficients
for both subsamples. The test is often called a Chow test.

Suppose there are two subsamples, of lengths N1 and N2, with
N = N1 + N2, and both N1 and N2 are greater than k. Examples.
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We can write

y ≡
[

y1
y2

]
, and X ≡

[
X1
X2

]
, (31)

where y1 and y2 are an N1-vector and an N2-vector, while X1 and X2
are N1 × k and N2 × k matrices.

We can put the subsamples together in the regression model[
y1
y2

]
=

[
X1
X2

]
β1 +

[
O
X2

]
γ + u, u ∼ N(0, σ2I). (32)

In the first subsample, the regression functions are the components
of X1β1. In the second, they are the components of X2(β1 + γ).

Thus γ is defined as β2 − β1.

Define Z as an N × k matrix with O in its first N1 rows and X2 in the
remaining N2 rows.
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Then (32) can be rewritten as

y = Xβ1 + Zγ + u, u ∼ N(0, σ2I). (33)

This model has N observations and 2k regressors. The null hypothesis
is now a set of k zero restrictions, that β2 − β1 = γ = 0.

We could run (33) to get the USSR, and then run the restricted model,
which is just the regression of y on X, to get the RSSR.

But USSR is just the sum of the two SSRs from the two subsample
regressions, say SSR1 and SSR2.

If RSSR denotes the SSR from regressing y on X, then

Fγ =
(RSSR − SSR1 − SSR2)/k
(SSR1 + SSR2)/(N − 2k)

. (34)

This Chow statistic is distributed as F(k, N − 2k) under the null
hypothesis that β1 = β2.
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