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Hypothesis Testing in Linear Regression Models

Initially, suppose the data are generated by the model
yi =B+u, u~NID(0,0?), (1)

where y; is an observation on the dependent variable, f3 is the
population mean, and ¢ is the variance of u;.

-1y, d  Var(p) = ~0? 2
ﬁ—ﬁl;yl an ar(p) = 5o (2)

These are special cases of = (X'X)"'X'y and Var(B) = ¢2(X'X)" 1.

We wish to test the null hypothesis (Hy) that B = By under the
assumptions that:

@ u; is normally distributed;

@ 02 is known.
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Hypothesis Testing in Linear Regression Models

The test statistic is

Ao Nl/Z .
o (vfr@?;l”: 7 (PP ®

where z is distributed as N(0, 1).

E(z) = 0 because f3 is an unbiased estimator of B, and g = By under the
null hypothesis.

The variance of z must be 1 because
N_, .~ N o2
2y _ Y —By)?) = = =
E() = SE((B— o) = 5 o =1 @
It is normally distributed because f is just the average of
the y; ~ N(ﬁo, 0’2).

We test Hy against an alternative hypothesis (H;) for which B # By.
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Hypothesis Testing in Linear Regression Models

Suppose that 8 = B1. Then B = B + 4, where 4 has mean 0 and
variance ¢%/N.

In fact, 4 is normal because the u; are normal. This implies that
4 ~ N(O, 0'2/N).

It follows that z is also normal. Under H,

z~N(A1), with A= (B1— o). )

For N sufficiently large, the mean of z should be large and positive if
B1 > Bo and large and negative if f; < Bo.

We reject the null hypothesis whenever |z| is large enough.
Two-tailed test: Test B = By against the alternative that  # Bo.

One-tailed test: Test B < B against the alternative that § > By, or test
B > Bo against the alternative that g < By.
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Hypothesis Testing in Linear Regression Models

In general, tests of equality restrictions are two-tailed tests, and tests of
inequality restrictions are one-tailed tests.

We need a rejection rule which tells us when to reject Hy. We do so
whenever z falls into the rejection region.

@ For two-tailed tests, rejection region is the union of two sets. One
contains sufficiently large positive values of z, and one contains
sufficiently large negative values.

@ For one-tailed tests, rejection region consists of just one set,
containing either sufficiently positive or sufficiently negative
values of z.

A test statistic combined with a rejection rule is simply called a test.
If a test leads us to reject Hy when it is true, we make a Type I error.

The probability of making a Type I error is supposed to be the level of
significance, or just the level, of the test, often denoted «.

Popular values of a include .10, .05, and .01 (rejections *, **, ***).
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Hypothesis Testing in Linear Regression Models

@ « denotes the nominal level of a test
@ The level of an exact test actually is «.
@ A test’s rejection probability may differ from the nominal level.

A test’s size is the supremum of the rejection probability over all DGPs
that satisfy Hy.
A test’s power is the probability that it rejects the null under the
alternative. Power function relates power to parameter value.
@ For (5), the distribution of z is entirely determined by A, with
A = 0 under the null. A is a noncentrality parameter or NCP.
@ The value of A depends on the parameters of the DGP. Recall that
A= (N'2/c)(Br— Po).
@ Thus A is proportional to 1 — Bo and to the square root of the
sample size, and it is inversely proportional to ¢.

@ As |A| increases, the probability mass of the N(A, 1) distribution
moves away from zero.
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Densities under null and alternative hypotheses
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Hypothesis Testing in Linear Regression Models

Failing to reject a false null hypothesis is called making a Type II error.
Probability of Type II error is 1 minus the power of the test.

The power of a two-tailed test based on z increases as 1 — Bo
increases, as ¢ decreases, and as the sample size increases.

To construct the rejection region for a test at level x, we need to
calculate the critical value associated with the level «.

Alternatively, we can calculate the P value associated with z.
For a two-tailed test based on any test statistic that is distributed as
N(0,1), the critical value c, is defined implicitly by

D(cy) =1—a/2. (6)

Solving this equation for ¢, in terms of the inverse function P! we
find that
e =D 1 —a/2). (7)
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Hypothesis Testing in Linear Regression Models

The probability thatz > ¢, is 1 — (1 — a/2) = a/2. By symmetry, the
probability that z < —c, is also a /2.

Pr (|z| > ca) = &, and so the rejection region for a test at level a is the
set defined by |z| > ¢,.

@ The critical value ¢, increases as a approaches 0.

@ When a = .05, critical value for a two-tailed test is
®~1(.975) = 1.96.

@ We reject the null at the .05 level whenever |2| > 1.96.

Instead of comparing the observed z with a critical value, we can
calculate the P value, or marginal significance level, associated with z.

p(z) is the greatest level for which a test based on z fails to reject the
null. Equivalently, it is the smallest level for which the test rejects.

A test rejects for all levels greater than p(z). It fails to reject for all
levels smaller than p(z). Thus the probability of Type I error is p(z).
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Hypothesis Testing in Linear Regression Models

For example, if p(z) = 0.064, the test rejects at the .10 level but not at
the .05 level.

For a two-tailed test based on z,
p(2) =2(1 - @([2])). (8)

The test rejects at level « if and only if |2| > ¢,. This is equivalent to
®(|2]) > D(cq), because P(-) is strictly increasing. Further,
D(cy) =1—a/2.

The smallest value of a for which the inequality holds is obtained by

solving
D(z)) =1—a/2, )

and the solution is the right-hand side of equation (8).

Unlike “reject” and “do not reject,” a P value (with enough digits)
preserves all the information conveyed by a test statistic.
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Hypothesis Testing in Linear Regression Models

Consider the test statistics 2.02 and 5.77. They both lead us to reject the
null at the .05 level using a two-tailed test. But the P values are 0.0434
and 7.93 x 10~°. The latter is far more convincing!

e To compute a P value, we transform the test statistic z ~ N(0, 1)
into p(z) ~ U(0,1).

@ We can think of p(z) as the value of a test statistic that follows the
U(0,1) distribution under the null hypothesis.

o A test atlevel a rejects whenever p(z) < a.

@ The sign of this inequality is the opposite of the one in |z| > c,.
We reject for large values of test statistics, but for small P values.

@ For a given value of z, a one-tailed P value is either 1 (if z is on the
“correct” side of 0) or half the value of a two-tailed P value.

The next figure illustrates how the test statistic z is related to its
P value p(z) for a two-tailed test.
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The PDF and CDF of the Standard Normal Distribution
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Hypothesis Testing in Linear Regression Models
Suppose that the value of the test statistic is 1.51. Then
Pr(z > 1.51) = Pr(z < —1.51) = .0655. (10)

This implies that the P value for a two-tailed test based on 2 is .1310.

It is also easy to see that the P value for a one-tailed test of the
hypothesis that f < g is .0655. This is just Pr(z > 1.51).

Similarly, the P value for a one-tailed test of the hypothesis that g > By
is Pr(z < 1.51) = .9345.

Because Pot = 2P17 when z > 0, a one-tailed test will have more
power than a two-tailed test against the one-sided alternative g > fBo.
This fact can be used by unscrupulous investigators.

@ P hacking has led to many dubious inferences, and has brought
the use of P values into disrepute.

@ There are many ways to P hack. One can try various
specifications, samples, estimators, and standard errors.

] September 21,2024 12 /28



The Normal Distribution

The Normal Distribution

The normal distribution is also called the Gaussian distribution.

A random variable x that is distributed as N(i, 02) can be generated by
X=u+oz, (11)

where z is standard normal.

The PDF of the N(p, 0) distribution, evaluated at x, is

S e (S

o271 207

In the case of the N (i, 0?) distribution,

o the third central moment measures skewness and is always zero;

e the fourth central moment measures kurtosis and equals 3¢*.
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The Normal Distribution

Any linear combination of (jointly) normally distributed random
variables is itself normally distributed.

Thus, for example, if x; ~ N(p, (712) and xp ~ N(p2, 022), with
correlation p,

y = axy + bxy ~ N(apy + bua, a?0f + 2abpoioy + b?0f).  (13)

If x; and x, were independent, and therefore uncorrelated, Var(y)
would not involve a covariance term.

Independence is equivalent to uncorrelatedness for the multivariate
normal distribution. In general, however, this is not true.

For (13), the random variables have to be multivariate normal, not just
individually normal. Consider the perverse example:

x1 ~N(0,1); x = x; with prob. %; xp = —x1 with prob. % (14)

Here x, ~ N(0,1), but x; and x; are not multivariate normal. A linear
combination of x; and x; is not normally distributed.
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The Normal Distribution

The multivariate normal distribution is a family of distributions for
random vectors.

An important special case is the bivariate normal distribution.

Begin with m mutually independent standard normal variables, z;,
i=1,...,m,and assemble them as the random m-vector z ~ N(0,I).

Any vector, say x, of linear combinations of the components of z
follows a multivariate normal distribution.

Such a vector can always be written as Az, for some (nonsingular)
m X m matrix A, which can always be chosen to be lower-triangular.

The covariance matrix of x is
Var(x) = E(xx") = AE(zz' )A" = AIA" = AA". (15)

Here we have used the fact that Var(z) = I. The variance of each
component of z is 1, and, since the z; are mutually independent, all the
covariances are 0.
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The Normal Distribution

Let Var(x) = Q. We can always find a lower-triangular A such that
AAT= Q.

The vector x is distributed as N(0, Q). If we add an m-vector p of
constants to x, the resulting vector must be distributed as N(p, Q).

If x ~ N(p, Q), the scalar a'x, where a is any fixed m-vector, is
normally distributed with mean a 'y and variance a'Qa.

If x is any multivariate normal vector with zero covariances, the
components of x are mutually independent.

In general, zero covariance between two random variables does not
imply independence.
@ Consider the perverse example above, in which x; and x; are both
normally distributed but not multivariate normal.

@ Even in much less perverse cases, two random variables can be
uncorrelated but nevertheless dependent.
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Two Bivariate Normal Distributions

o1 = 15, g9 — 10, p = —0.9

T2

g1 = 10, g9 — 10, P = 0.5

Z1
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The Normal Distribution

The figure illustrates the bivariate normal distribution, of which the
PDF (when both means are 0) is

1 1 -1 /x? x1xy X3
— T (T M2 T2 (g6
2t (1= p2)V20009 P (2(1 — 0?) <012 p0'1(7'2 + 022) (16)

This is written in terms of the variances 012 and 022 of the two variables,
and their correlation p.

@ We could use o1, = poq0, instead of p as the third parameter.

@ The contours are elliptical. They slope upward when p > 0 and
downward when p < 0.

@ They do so more steeply as 0, /07 increases.
@ The closer |p| is to 1, the more elongated are the contours.

@ We could put a straight line with constant 0 and slope 8 = po> /01
through the middle of the contours.

e B would be the slope of E(x2|x1).

] September 21,2024 18 /28



The Chi-Squared Distribution
The Chi-Squared Distribution

Suppose the random vector z has components z1, . . ., z,, that are
mutually independent standard normal random variables. Thus
z ~ N(0,I). Then the random variable

? (17)

— T,
y=lzl>=z"z=} 3

s

I
—

1

follows the chi-squared distribution with m degrees of freedom, or
2

y ~ x*(m).

The mean of the x?(m) distribution is

m m

E(y) =) E(z) =)} 1=m. (18)

i=1 i=1

Since the z; are independent, the variance of Zziz is just m times the
variance of ziz.
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The Chi-Squared Distribution

Var(y) = iVar(ziz) =mE((z? — 1)) (19)
= mE(z} —22241) =m(3-2+1) =2m. (20)

The third equality here uses the fact that E(z}) = 3.

If y; ~ x*(my) and yo ~ x*(my), and y; and y, are independent, then
Y1+ Y2 ~ x*(my +my).
This is true because

my-+my my+mp )
y=vit+y= Zz + ) =) Z (1)
i=mp+1 i=1

Unfortunately, a weighted sum of two or more x? random variables is
not distributed as x?.
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Several Chi-Squared Distributions
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The Chi-Squared Distribution

The figure shows the PDF of the x?(m) distribution for m = 1, 3, 5,
and 7. Even values of m are omitted for clarity.

Note that the x?(m) distribution approaches the N(m, 2m) distribution
as m becomes large.

Many test statistics can be written as quadratic forms in normal
vectors, or as functions of such quadratic forms.

Theorem 4.1.

Q If the m-vector x is distributed as N(0, 2), then the quadratic form
x'Q~lx is distributed as x?(m);

@ If P is a projection matrix with rank r and z is an N-vector that is
distributed as N(0,I), then z'Pz is distributed as x2(r).

Proof:

Since x is multivariate normal with mean vector 0, so is the vector
A lx, where AA" = Q.
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The Chi-Squared Distribution

It is easy to see that

Var(A™'x) = E(A 'xx'(A") 1) (22)
=AIQAYT=AaTAAT A =1, (23)

Thus the vector z = A~ 1x is distributed as N(0, I).
The quadratic form x'Q 'x = x"(AT)"'A"lx = z'z.

This is the sum of m independent, squared, standard normal random
variables, so it must be x?(m).

Since P is a projection matrix, it must project orthogonally on to some
subspace of EN which can be characterized by an N x r matrix Z.

If P projects on to S(Z), the span of the columns of Z, then
2'Pz=2'2(2'2)"'7". (24)
This is a quadratic form in the r-vector Z'z and the matrix (Z'Z)"!.
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The Chi-Squared Distribution

The r-vector Z'z must follow the N (0, Z'Z) distribution, because
E(Z'z)=0 and E(Z'22'2)=2"12=27'Z. (25)
Therefore, z'Pz is a quadratic form in the vector Z'"z and the matrix

(Z'Z)~!, which is the inverse of its covariance matrix.

This quadratic form is x(r) from part 1 of the theorem, since Z'z is a
linear combination of z which is multivariate normal.

Theorem 4.1 is incredibly useful, not only for dealing with OLS
estimation, but also for asymptotic analysis of all sorts of estimators,
such as maximum likelihood and GMM.

@ In many cases, we can find an m-vector x that is asymptotically
normally distributed with covariance matrix ) that can be
consistently estimated by €).

e If so, we can conclude that the test statistic x'Q~1x is
asymptotically distributed as x?(m).
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The Student’s t Distribution

The Student’s t Distribution

If z ~ N(0,1) and y ~ x%(m), and z and y are independent, then
z

(y/m)l/2

follows the Student’s ¢ distribution with m degrees of freedom; we
write t ~ t(m).

t

(26)

The moments of t(m) depend on m. Only m — 1 moments exist.

The #(1) distribution, also called the Cauchy distribution, has no
moments at all, and the ¢(2) distribution has no variance.

For the Cauchy, the denominator of ¢(1) is just the absolute value of a
standard normal random variable.

Whenever the denominator is close to 0, the ratio is likely to be very
big, even if the numerator is not particularly large.
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The Student’s t Distribution

The Cauchy distribution has extremely thick tails. As m increases, the
chance that the denominator of (26) is close to 0 diminishes, and so the
tails become thinner.

For t(m) with m > 2, Var(t) = m/(m — 2). Thus, as m — oo, the
variance tends to 1, the variance of the standard normal distribution.

In fact, the entire #(m) distribution tends to N(0, 1) as m — oo.

The denominator of t is y = Y/, z?, where the z; are independent
standard normal variables. By an LLN, y/m, which is the average of
the z?, tends to its expectation of 1 as m — co.

The figure shows PDFs of the N(0,1), £(1), t(2), and #(5) distributions.

For larger values of m, the PDF of t(m) is very similar to the PDF of the
standard normal distribution.
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The Student’s t Distribution

Standard Normal

t(1)
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The F Distribution

The F Distribution

If y; and y, are independent random variables distributed as x? ()
and x?(m,), respectively, then the random variable

P y1/m

= Yo/ (27)

follows the F distribution with m; and m;, degrees of freedom. A
compact way of writing this is F ~ F(m,m;).

The F(my, my) distribution looks a lot like a rescaled version of the
x?(my) distribution. The denominator of (27) tends to 1 as 11, — oo,
and so myF — y1 ~ x*(my).

For large values of my, x ~ F(my,my) behaves very much like x/m,
where x ~ x?(my).

The square of a t(m;) random variable is distributed as F(1, m,).
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