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Efficiency of the OLS Estimator

For scalar parameters, one estimator is more efficient than another if
the precision of the former is greater than that of the latter.

Let β̈ and β̂ be unbiased estimators of a k-vector of parameters β, with
covariance matrices Var(β̈) and Var(β̂), respectively.

β̂ is said to be more efficient than β̈ if and only if
Var(β̂)−1 − Var(β̈)−1 is a non-zero positive semidefinite matrix.
If A and B are positive definite matrices, then A − B is positive
semidefinite if and only if B−1 − A−1 is positive semidefinite.
Thus β̂ is more efficient than β̈ if and only if Var(β̈)− Var(β̂) is a
non-zero positive semidefinite matrix.
If β̂ is more efficient than β̈, every element of β, and every linear
combination of them, is estimated at least as efficiently by using β̂
as by using β̈.
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Efficiency of the OLS Estimator

Consider γ = w⊤β.

Var(γ̈)− Var(γ̂) = w⊤Var(β̈)w − w⊤Var(β̂)w

= w⊤(Var(β̈)− Var(β̂)
)
w.

(1)

This must be either positive or zero if Var(β̈)− Var(β̂) is positive
semidefinite. Thus Var(γ̂) ≤ Var(γ̈) when β̂ is more efficient than β̈.

Let β̂ denote the OLS estimator and β̈ some other linear estimator.

An estimator is linear if we can write it as a linear function of y. β̂ is
linear, because it is equal to the matrix (X⊤X)−1X⊤ times the vector y.

For any linear estimator that is not the OLS estimator,

β̈ = Ay = (X⊤X)−1X⊤y + Cy, (2)

where A and C are k × N matrices that depend on X.
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Efficiency of the OLS Estimator

To obtain the second equality in (2), define

C ≡ A − (X⊤X)−1X⊤. (3)

Alternative linear estimators include instrumental variables and
generalized least squares.

The Gauss-Markov Theorem says that β̂ is the best linear unbiased
estimator, or BLUE. We are comparing it with every other unbiased
estimator β̈ of the form (2).

If E(u |X) = 0 and E(uu⊤|X) = σ2 I, then Var(β̈)− Var(β̂) is a positive
semidefinite matrix.

Substituting for y in (2), we find that

β̈ = A(Xβ0 + u) = AXβ0 + Au. (4)

Since we want β̈ to be unbiased, the expectation of the rightmost
expression in (4), conditional on X, must be β0.
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Efficiency of the OLS Estimator

Since E(u |X) = 0, E(Au | x) = 0, and, by the law of iterated
expectations, E(Au) = 0.

So the key condition that A, and thus C, must satisfy for β̈ to be
unbiased is that E(AXβ0 |X) = β0.

This is the case for all β0 if and only if AX = I.

Equivalently, it holds for all β0 whenever CX = O, since

CX = AX − (X⊤X)−1X⊤X = AX − I. (5)

The condition that CX = O implies that Cy = Cu. Since Cy = β̈ − β̂,
this makes it clear that β̈ − β̂ has conditional expectation zero.

The unbiasedness condition on β̈ also implies that the covariances of
β̈ − β̂ with β̂ are all zero.

In other words, β̈ = β̂ + v, where v is uncorrelated with β̂.
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Since the covarances of β̈ − β̂ with β̂ are zero,

E
(
(β̂ − β0)(β̈ − β̂)⊤

)
= E

(
(X⊤X)−1X⊤uu⊤C⊤) (6)

= (X⊤X)−1X⊤σ2
0 IC⊤ (7)

= σ2
0 (X

⊤X)−1X⊤C⊤= O. (8)

Once again, we see that CX = O, so that E(Cy) = E(Cu) = 0.

To complete the proof, note that

Var(β̈) = Var
(

β̂ + (β̈ − β̂)
)

= Var
(

β̂ + Cy
)

= Var(β̂) + Var(Cy).

(9)

The difference between Var(β̈) and Var(β̂) is Var(Cy), which must be
a positive semidefinite matrix.
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Efficiency of the OLS Estimator

Any unbiased linear estimator β̈ equals β̂ plus Cy, which has
expectation zero and is uncorrelated with β̂:

β̈ = β̂ + Cy = β̂ + v. (10)

The Gauss-Markov theorem requires the disturbances to be
independent and homoskedastic, but they do not have to be
normally distributed.
It applies only to a correctly specified model with exogenous
regressors and disturbances with a scalar covariance matrix.
It does not say that β̂ is more efficient than every imaginable
estimator. Nonlinear and/or biased estimators may well perform
better than OLS.

Something very similar to (10) holds asymptotically for estimators that
are asymptotically efficient and asymptotically unbiased.
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Residuals and Disturbances

Least-squares residuals û ≡ y − Xβ̂ have both numerical and
statistical properties.

Numerical: û is orthogonal to every vector that lies in S(X).

Consistency of β̂ implies that û → u as N → ∞.

MXy = MXXβ0 + MXu = MXu = û. (11)

Each residual is a linear combination of every one of the disturbances:

ûi = ui − Xi(X⊤X)−1X⊤u (12)

= ui − Xi(X⊤X)−1
N

∑
j=1

Xj
⊤uj. (13)

Even when the ui are independent, the ûi are not independent.
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Residuals and Disturbances

Now assume that E(u |X) = 0, so that E(ui |X) = 0 for all i.

Since, by (13), ûi is just a linear combination of all the ui, E(ûi |X) = 0.
Therefore, Var(ûi) is just E(û2

i ).

We know that ∥û∥ < ∥u(β)∥ = ∥y − Xβ∥ for any β ̸= β̂. In particular,
∥û∥ ≤ ∥u(β0)∥.

This implies that E
(
∥û∥2) ≤ E

(
∥u∥2). If Var(ui) = σ2

0 , then

N

∑
i=1

Var(ûi) =
N

∑
i=1

E(û2
i ) = E

( N

∑
i=1

û2
i

)
= E

(
∥û∥2) (14)

≤ E
(
∥u∥2) = E

( N

∑
i=1

u2
i

)
=

N

∑
i=1

E(u2
i ) = Nσ2

0 . (15)

This suggests that, at least for most observations, Var(ûi) must be less
than σ2

0 . In fact, Var(ûi) is less than σ2
0 for every observation.
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The covariance matrix of the entire vector û is

Var(û) = Var(MXu) = E(MX uu⊤MX) (16)

= MXE(uu⊤)MX = MXVar(u)MX (17)

= MX(σ
2
0 I)MX = σ2

0 MXMX = σ2
0 MX . (18)

This uses the facts that E(MXu) = 0 and that MX is idempotent.

From (18), E(ûiûj) ̸= 0 for i ̸= j. Residuals are correlated even when
disturbances are uncorrelated.

Residuals do not have constant variance, and the variance of every
residual must always be smaller than σ2

0 .

A typical diagonal element of MX is 1 − hi. Therefore, it follows from
(18) that

Var(ûi) = E(û2
i ) = (1 − hi)σ2

0 . (19)

Since 0 ≤ 1 − hi < 1, we see that E(û2
i ) < σ2

0 .
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Estimating the Variance of the Disturbances

(19) tells us that high-leverage observations, for which hi is relatively
large, must have residuals with unusually small variances.

The method of moments suggests that we can estimate σ2 by using the
corresponding sample moment.

If we observed the ui, this sample moment would be

1
N

N

∑
i=1

u2
i . (20)

In fact, we only observe the ûi, so a natural MM estimator is

σ̂2 ≡ 1
N

N

∑
i=1

û2
i . (21)

Because E(û2
i ) < σ2

0 , by (19), σ̂2 must be biased downward.
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Estimating the Variance of the Disturbances

We know that ∑N
i=1 hi = k. Therefore,

E(σ̂2) =
1
N

N

∑
i=1

E(û2
i ) =

1
N

N

∑
i=1

(1 − hi)σ2
0 =

N − k
N

σ2
0 . (22)

Since û = MXu and MX is idempotent, the SSR is just u⊤MXu, and

E
(
u⊤MX u

)
= E

(
SSR(β̂)

)
= E

( N

∑
i=1

û2
i

)
= (N − k)σ2

0 . (23)

Adding one more regressor has exactly the same effect on the
expectation of the SSR as taking away one observation.

The result (23) suggests another MM estimator which is unbiased
whenever β̂ is:

s2 ≡ 1
N − k

N

∑
i=1

û2
i . (24)
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Estimating the Variance of the Disturbances

The square root of s2 is s, the standard error of the regression (or
regression standard error). Even though s2 provides an unbiased
estimate of σ2, s does not provide an unbiased estimate of σ.

An unbiased estimator for Var(β̂) is

V̂ar(β̂) = s2(X⊤X)−1. (25)

This is the usual estimator of Var(β̂) under the assumption of IID
disturbances.

Suppose that X is fixed across samples. Then σ2(X⊤X)−1 is the
same for every sample, but s2(X⊤X)−1 varies.
However, s2(X⊤X)−1 is always proportional to σ2(X⊤X)−1. Like
the latter, it is normally O(N−1)

Evidently, s2 = Op(1), and s2/σ2
0 → 1 as N → ∞.
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Over-specification

A regression model is over-specified if some variables that belong to
Ωi, but do not appear in the DGP, are mistakenly included.

Since the DGP remains a special case of the model, there is no actual
misspecification, merely a failure to incorporate zero restrictions that
are true.

Consider the over-specified linear regression model

y = Xβ + Zγ + u, u ∼ IID(0, σ2I), (26)

where Xi and Zi belong to Ωi. The data are actually generated by

y = Xβ0 + u, u ∼ IID(0, σ2
0 I). (27)

The DGP (27) is a special case of (26), with β = β0, γ = 0, and σ2 = σ2
0 .
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Over-specification

The estimates β̂ from (26) are the same as those from the FWL
regression

MZ y = MZXβ + residuals, (28)

where, as usual, MZ = I − Z(Z⊤Z)−1Z⊤.

Thus we see that
β̂ = (X⊤MZX)−1X⊤MZ y. (29)

β̂ must be unbiased if X and Z are exogenous.

If we replace y by Xβ0 + u, we find that

β̂ = β0 + (X⊤MZX)−1X⊤MZ u. (30)

The second term on the r.h.s. has conditional mean 0, provided we
take expectations conditional on Z as well as on X.

Imposing the restriction that γ = 0 yields β̃ = (X⊤X)−1X⊤y, which is
also unbiased because the restriction is true.
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Over-specification

We now have two unbiased linear estimators, β̂ and β̃.

When the restriction holds, the matrix Var(β̂)− Var(β̃) must be
positive semidefinite. We know that

Var(β̃) = σ2
0 (X

⊤X)−1. (31)

It is easily shown that

Var(β̂) = E
(
(β̂ − β0)(β̂ − β0)

⊤) (32)

= (X⊤MZX)−1X⊤MZE(uu⊤)MZX(X⊤MZX)−1 (33)

= σ2
0 (X

⊤MZX)−1X⊤MZ IMZX(X⊤MZX)−1 (34)

= σ2
0 (X

⊤MZX)−1. (35)

When there is only one regressor, x, and one parameter, β, it is easy to
see that β̃ is more efficient than β̂.
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Over-specification

Since MZ is a projection matrix, ∥MZ x∥ must be smaller (or at least, no
larger) than ∥x∥. Thus x⊤MZ x ≤ x⊤x, which implies that

σ2
0 (x

⊤MZ x)−1 ≥ σ2
0 (x

⊤x)−1. (36)

Notice that Var(β̂) is proportional to the inverse of the SSR from a
regression of x on the other regressors.

Showing that Var(β̂)− Var(β̃) is positive semidefinite is equivalent to
showing that Var(β̃)−1 − Var(β̂)−1 is positive semidefinite:

X⊤X − X⊤MZX = X⊤(I − MZ)X

= X⊤PZX = (PZX)⊤PZX.
(37)

This is the transpose of a matrix times itself. Thus
σ2

0 (X
⊤MZX)−1 − σ2

0 (X
⊤X)−1 must be positive semidefinite.

Adding additional variables that do not really belong in a model leads
to less accurate estimates unless PZX = O, so that MZX = X.
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Over-specification

We used the FWL theorem to show that β̂ = (X⊤MZX)−1X⊤MZ y.

If we were unaware of this theorem, we would need to write[
β̂
γ̂

]
=

[
X⊤X X⊤Z
Z⊤X Z⊤Z

]−1 [X⊤y
Z⊤y

]
. (38)

Then we would have to invert the matrix in (38) and multiply the first
row of the inverse by the vector that follows it.

The inverse is (not easily!) seen to be[
(X⊤MZX)−1 −(X⊤MZX)−1X⊤Z(Z⊤Z)−1

−(Z⊤Z)−1Z⊤X(X⊤MZX)−1 (Z⊤MXZ)−1

]
. (39)

This leads directly to β̂ = (X⊤MZX)−1X⊤MZy.

To obtain γ̂ = (Z⊤MXZ)−1Z⊤MX y, it is easier to write the lower
left-hand submatrix as −(Z⊤MXZ)−1Z⊤X(X⊤X)−1.
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Under-specification

Now suppose the DGP is really

y = Xβ0 + Zγ0 + u, u ∼ IID(0, σ2
0 I). (40)

The estimator β̂ is now the “correct” one to use.

If instead we use β̃, there really is misspecification, and the restricted
estimator β̃ is biased.

E(β̃) = E
(
(X⊤X)−1X⊤(Xβ0 + Zγ0 + u)

)
(41)

= β0 + (X⊤X)−1X⊤Zγ0 + E
(
(X⊤X)−1X⊤u

)
(42)

= β0 + (X⊤X)−1X⊤Zγ0. (43)

The second term in (43) equals zero only when X⊤Z = O or γ0 = 0.
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Under-specification

In all other cases, β̃ is biased. The magnitude of the bias depends on γ0
and on the X and Z matrices.

This bias does not vanish as N → ∞, so β̃ is also generally inconsistent.

Since β̃ is biased, we cannot use Var(β̃) to evaluate its accuracy.
Instead, we can use the mean squared error matrix, or MSE matrix:

MSE(β̃) ≡ E
(
(β̃ − β0)(β̃ − β0)

⊤). (44)

The MSE matrix is equal to Var(β̃) if β̃ is unbiased, but not otherwise.

For a scalar parameter β,

MSE(β̃) = Var(β̃) +
(
E(β̃)− β0

)2. (45)

In this case, it is common to report the root mean squared error, or
RMSE, instead of the MSE.
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Under-specification

It is easy to see that

β̃ − β0 = (X⊤X)−1X⊤Zγ0 + (X⊤X)−1X⊤u. (46)

Therefore, β̃ − β0 times itself transposed is equal to

(X⊤X)−1X⊤Zγ0γ0
⊤Z⊤X(X⊤X)−1 + (X⊤X)−1X⊤uu⊤X(X⊤X)−1 (47)

+ (X⊤X)−1X⊤Zγ0u⊤X(X⊤X)−1 + (X⊤X)−1X⊤uγ0
⊤Z⊤X(X⊤X)−1. (48)

The second term here has expectation σ2
0 (X

⊤X)−1, and the third and
fourth terms have expectation zero. Thus

MSE(β̃) = σ2
0 (X

⊤X)−1 + (X⊤X)−1X⊤Zγ0γ0
⊤Z⊤X(X⊤X)−1. (49)

The first term here is O(N−1), and the second is O(1).

We would like to compare MSE(β̃) with MSE(β̂) = Var(β̂).

If the bias is small, the second term in (49) must be small, and in that
case β̃ may well have smaller MSE than β̂.
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Under-specification

However, if the bias is large, the second term in (49) is necessarily
large, and β̃ must have larger MSE than β̂.

β̃ may yield smaller MSE for some parameters and β̂ for others.

V̂ar(β̃) calculated by a least-squares regression program attempts to
estimate the first term in (49), but it ignores the second.

Because s2 is typically larger than σ2
0 if some regressors have been

incorrectly omitted, this estimate is biased.
Under-specification causes bias and inconsistency, but
over-specification “merely” causes inefficiency. Which problem is
more severe?
It depends on how much information the sample contains. In
sufficiently large samples, avoid under-specification at all costs.
However, in samples of modest size, the gain in efficiency from
omitting some variables may be very large relative to the bias that
is caused by their omission. There is a bias-variance tradeoff.
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Measures of Goodness of Fit

The most commonly used (and misused) measure of goodness of fit is
the coefficient of determination, or R2.

The uncentered R2, denoted R2
u, is the ratio of the explained sum of

squares (ESS) of the regression to the total sum of squares (TSS).

As a consequence of Pythagoras’ Theorem,

TSS = ∥y∥2 = ∥PXy∥2 + ∥MXy∥2 = ESS + SSR. (50)

Therefore,

R2
u =

ESS
TSS

=
∥PXy∥2

∥y∥2 = 1 − ∥MXy∥2

∥y∥2 = 1 − SSR
TSS

= cos2 θ, (51)

where θ is the angle between y and PXy.
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Measures of Goodness of Fit

For any angle θ, −1 ≤ cos θ ≤ 1. Consequently, 0 ≤ R2
u ≤ 1.

If θ = 0, y and Xβ̂ would coincide, the residual vector û would
vanish, and we would have a perfect fit, with R2

u = 1.
If R2

u = 0, the fitted value vector would vanish, and y would
coincide with û.
R2

u depends on the data only through residuals and fitted values.
It is invariant to nonsingular linear transformations of X.
Because it is a ratio, R2

u is invariant to changes in the scale of y.
The centered R2, denoted R2

c , is much more commonly encountered
than R2

u. All variables are centered, that is, expressed as deviations
from their means, before ESS and TSS are calculated.

By adding a large enough constant to all the yi, we could make R2
u

become arbitrarily close to 1, since the SSR would stay the same and
the TSS would increase without limit.

But R2
c is invariant to changes in the mean of the regressand.
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Measures of Goodness of Fit

Both versions of R2 are valid only if a regression model is
estimated by least squares. Only then is TSS = ESS + SSR.
The centered version is not valid if the regressors do not include a
constant term (or equivalent), i.e. if ι does not belong to S(X).
Both R2

u and R2
c increase whenever more regressors are added.

Consider restricted and unrestricted models with the same dependent
variable. They have the same TSS, so the regression with the larger
ESS (smaller SSR) must also have the larger R2.

The ESS from the unrestricted model is ∥PX,Z y∥2, and the ESS from
the restricted model is ∥PX y∥2. The difference between them is

y⊤PX,Z y − y⊤PX y = y⊤(PX,Z − PX)y. (52)

Since the matrix PX,Z − PX is an orthogonal projection matrix, (52)
must be non-negative.
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Measures of Goodness of Fit

Why is PX,Z − PX an orthogonal projection matrix? Because
S(X) ⊂ S(X, Z). This implies that PX projects on to a subspace of the
image of PX,Z.

We conclude that the ESS, and hence the R2, from the unrestricted
model can be no less than those from the restricted model.

The R2 can be modified so that adding additional regressors does not
necessarily increase its value.

If ι ∈ S(X), the centered R2 can be written as

R2
c = 1 − ∑N

i=1 û2
i

∑N
i=1(yi − ȳ)2

. (53)

The SSR has expectation (N − k)σ2
0 under standard assumptions. The

denominator is N − 1 times an unbiased estimator of the variance of yi
about its true mean. As such, it has expectation (N − 1)Var(y).
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Measures of Goodness of Fit

Thus the second term of (53) can be thought of as the ratio of two
biased estimators.

If we replace these by unbiased ones, we obtain the adjusted R2,

R̄2 ≡ 1 −
1

N−k ∑N
i=1 û2

i
1

N−1 ∑N
i=1(yi − ȳ)2

= 1 − (N − 1)y⊤MXy
(N − k)y⊤Mιy

. (54)

R̄2 and R2
c are generally very similar, except when

(N − k)/(N − 1) << 1.

One nice feature of R2
u and R2

c is that they are constrained to lie
between 0 and 1.

In contrast, R̄2 can actually be negative when (N − 1)/(N − k) is
greater than TSS/SSR.

Never compare any form of R2 for models that are estimated
using different datasets!
Models with high R2 can be complete nonsense.
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