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Covariance Matrices and Precision Matrices

The matrix of central second moments of a random vector b is Var(b).
This is called the covariance matrix, variance matrix, or
variance-covariance matrix,

Var(b) ≡ E
((

b − E(b)
)(

b − E(b)
)⊤). (1)

When E(b) = 0, Var(b) = E(bb⊤).

The i th diagonal element of Var(b) is Var(bi) = E
(
bi − E(bi)

)2.

The ij th off-diagonal element of Var(b) is

Cov(bi, bj) ≡ E
((

bi − E(bi)
)(

bj − E(bj)
))

. (2)

If i = j, Cov(bi, bj) = Var(bi).

Since Cov(bi, bj) = Cov(bj, bi), Var(b) must be a symmetric matrix.
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If bi and bj are statistically independent, then Cov(bi, bj) = 0. The
converse is not true, however.

The inverse of a covariance matrix is a precision matrix.

The correlation between bi and bj is

ρ(bi, bj) ≡
Cov(bi, bj)(

Var(bi)Var(bj)
)1/2 , with − 1 ≤ ρ(bi, bj) ≤ 1. (3)

Correlations can be arranged into a symmetric correlation matrix with
all elements on the principal diagonal equal to 1.

Var(b) must be positive semidefinite as well as symmetric.

In most cases, covariance matrices and correlation matrices are
actually positive definite.

A k × k symmetric matrix A is positive definite if, for all nonzero
k-vectors x, the matrix product x⊤Ax is positive.
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x⊤Ax is called a quadratic form.

A quadratic form always involves a k-vector, in this case x, and a k × k
matrix, in this case A.

x⊤Ax =
k

∑
i=1

k

∑
j=1

xi xjAij. (4)

If this can be zero but not negative, then A is said to be positive
semidefinite.

Any matrix of the form B⊤B is positive semidefinite. B⊤B is symmetric
and, for any nonzero x,

x⊤B⊤Bx = (Bx)⊤(Bx) = ∥Bx∥2 ≥ 0. (5)

This is positive unless Bx = 0. In that case, since x ̸= 0, the columns of
B are linearly dependent, and B does not have full column rank.
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B can have full rank but not full column rank if B has fewer rows
than columns. If so, maximum possible rank is number of rows.
When B does have full column rank, B⊤B is positive definite.
If A is positive definite, then any matrix B⊤AB is positive definite
if B has full column rank, positive semidefinite otherwise.
A positive definite matrix cannot be singular, because, if A is
singular, there must exist a nonzero x such that Ax = 0. But then
x⊤Ax = 0 as well, which means that A is not positive definite.
Diagonal elements of a positive definite matrix must all be
positive. Suppose that A22 were negative. Then, if we chose x to be
the vector e2, the quadratic form would just be e2

⊤Ae2 = A22 < 0.
For a positive semidefinite matrix, diagonal elements may be 0.
The off-diagonal elements of A may be of either sign.
The inverse of a positive definite matrix always exists, and it is
positive definite.
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The identity matrix, I, is a positive definite matrix, since

x⊤I x =
k

∑
i=1

x2
i . (6)

If the k × k matrix A is symmetric and positive definite, then there
always exists a full-rank k × k matrix B such that A = B⊤B.

Think of B as a square root matrix. For any matrix A, the
corresponding matrix B is not unique.

In particular, B can be chosen to be symmetric, but it can also be
chosen to be upper or lower triangular.

We can compute a triangular B using the Cholesky decomposition.

Since a triangular matrix is extremely easy to invert, we can use the
Cholesky decomposition to find A−1 = B−1(B⊤)−1.

Finding a symmetric B is a lot more work. It involves finding the
eigenvectors of A.
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The OLS Covariance Matrix

The covariance matrix of β̂ depends on the covariance matrix of the
disturbances (error terms).

If the disturbances are IID, the covariance matrix of u is the scalar
matrix σ2I:

Var(u) = E(uu⊤) = σ2I. (7)

Note that (7) does not require the disturbances to be independent, or
even to have the same distribution.

But they must all have the same variance, and the covariance of each
pair of disturbances must be zero.

When every ui has the same variance, then they are homoskedastic.

When the Var(ui) differ, then they are heteroskedastic.

In general, we denote the N × N error covariance matrix by Ω.
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For time-series data, when Ω has nonzero off-diagonal elements, the
disturbances are said to be autocorrelated or serially correlated.

If the observations of a sample characterize different locations in
space, they may display spatial autocorrelation.

Another possibility is that the disturbances are clustered, correlated
within each of G clusters but uncorrelated across them.

When observations are sorted by cluster, Ω is block-diagonal, with G
diagonal blocks that correspond to the G clusters:

Ω =


Ω1 O . . . O
O Ω2 . . . O
...

...
...

O O . . . ΩG

. (8)

Here Ωg is the Ng × Ng covariance matrix for the observations
belonging to the gth cluster.
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Disturbances that are autocorrelated or clustered may or may not also
be heteroskedastic. The usual approach to cluster-robust inference also
allows for heteroskedasticity of unknown form.

When the DGP belongs to the model we estimate,

β̂ − β0 = (X⊤X)−1X⊤u. (9)

When β̂ is unbiased, Var(β̂) is the expectation of the k × k matrix

(β̂ − β0)(β̂ − β0)
⊤= (X⊤X)−1X⊤uu⊤X(X⊤X)−1. (10)

If we take this expectation, conditional on X, we find that

Var(β̂) = (X⊤X)−1X⊤E(uu⊤)X(X⊤X)−1 (11)

= (X⊤X)−1X⊤ΩX(X⊤X)−1. (12)

This form of covariance matrix is called a sandwich covariance matrix,
because X⊤ΩX is sandwiched between the two instances of (X⊤X)−1.
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The diagonal elements of Var(β̂) are particularly interesting. The
square root of the k th diagonal element is the standard error of β̂k.

In practice, we almost never know Ω, so we have to figure out how to
estimate the matrix X⊤ΩX.

That is what methods for heteroskedasticity-consistent and
cluster-robust covariance matrix estimation do.

If Ω = σ2
0 I, so that there is neither heteroskedasticity not

autocorrelation, then equation (12) simplifies greatly. It becomes

Var(β̂) = (X⊤X)−1X⊤σ2
0 IX(X⊤X)−1 (13)

= σ2
0 (X

⊤X)−1X⊤X(X⊤X)−1 = σ2
0 (X

⊤X)−1. (14)

For the next few lectures, we will assume that (14) holds.

But this simplification is often not valid, and most modern empirical
work uses sandwich covariance matrices.
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Precision of the Least-Squares Estimates

When (14) holds, the precision matrix is

1
σ2

0
X⊤X. (15)

This is inversely proportional to σ2
0 . The more random variation there

is in the disturbances, the less precise are the parameter estimates.

It is illuminating to rewrite (15) as

N
σ2

0

( 1
N

X⊤X
)

. (16)

Under standard assumptions, N−1X⊤X is O(1).

Thus the precision matrix (16) must be O(N). When X is stochastic, it
is Op(N).
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If we double the sample size, the precision of β̂ should roughly
double, and the standard errors of the individual β̂i will be,
approximately, divided by

√
2.

Consider the model y = β1ι + u. Replacing X with ι, we find that

β̂1 = (ι⊤ι)−1ι⊤y =
1
N

N

∑
i=1

yi, and (17)

Var(β̂1) = σ2
0 (ι

⊤ι)−1 =
1
N

σ2
0 . (18)

The precision of the sample mean is exactly proportional to N, since
the variance is proportional to 1/N.

We have seen that σ2
0 and N affect the precision of β̂. The third thing

that does so is the matrix X.

High-leverage observations affect it much more than average ones.
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We can rewrite a linear regression model as

y = x1β1 + X2β2 + u, (19)

where X has been partitioned into x1 and X2.

By the FWL Theorem, (19) yields the same estimate of β1 as the FWL
regression

M2y = M2 x1β1 + residuals, (20)

where M2 ≡ I − X2(X2
⊤X2)−1X2

⊤.

This estimate is β̂1 = x⊤1 M2y/x⊤1 M2 x1, and its variance is
σ2

0 (x
⊤
1 M2 x1)

−1. Thus the precision of β̂1 is

1
σ2

0
x⊤1 M2 x1. (21)

How much information the sample gives us about β1 is proportional
to the squared Euclidean length of the vector M2 x1.
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When ∥M2 x1∥ is big, because N is large or at least some elements of
M2 x1 are large, β̂1 is relatively precise.

When ∥M2 x1∥ is small, because N is small or all the elements of M2 x1
are small, β̂1 is relatively imprecise.

The squared Euclidean length of M2 x1 is just the SSR from

x1 = X2c + residuals. (22)

Thus the precision of β̂1 is proportional to the SSR from regression
(22). It depends on X2 just as much as it depends on x1.

The quadratic form x⊤1 M2 x1 can be written as ∑N
i=1(M2x1)

2
i . Each term

in the sum is a squared residual. For high-leverage observations, these
squared residuals are large.

When X2 explains x1 much better than a constant alone, the length of
M2 x1 is much less than the length of Mιx1.

In this case, x1 is said to be collinear with some of the other regressors.

September 12, 2024 13 / 20



Precision of the Least-Squares Estimates

This should be called approximate collinearity, but it is often
(wrongly) called multicollinearity.

Collinearity can greatly reduce the precision of OLS estimates.
Estimates can be imprecise even when N is very large.

When the disturbances are not independent and identically
distributed, things get more complicated.

In general, for a sandwich covariance matrix, the precision of β̂1 is

(x⊤1 M2 x1)
2

x⊤1 M2ΩM2 x1
. (23)

It is usual to assume that x⊤1 M2 x1 = O(N). But, when there is
dependence, it may be that x⊤1 M2ΩM2 x1 = O(N∗), with N∗ > N.

In that case, the precision of β̂1 may be O(N2/N∗) < O(N). Thus
information accumulates less rapidly than it does for independent
observations.
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Linear Functions of Parameter Estimates

Suppose we are interested in the variance of γ̂, where γ = w⊤β,
γ̂ = w⊤β̂, and w is a k-vector of known coefficients.

By choosing w appropriately, we can make γ equal to any one of the
βi, or to the sum of the βi, or to any linear combination of the βi.

For example, if γ = 3β1 − β4, w would be a vector with 3 as the first
element, −1 as the fourth element, and 0 for all the other elements.

The variance of γ̂ is just

Var(γ̂) = Var(w⊤β̂) = E
(
w⊤(β̂ − β0)(β̂ − β0)

⊤w
)

(24)

= w⊤E
(
(β̂ − β0)(β̂ − β0)

⊤)w (25)

= w⊤Var(β̂)w. (26)

In general, Var(γ̂) depends on every element of Var(β̂).
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The delta method, discussed in Chapter 5, generalizes the result (26)
to nonlinear functions of β.

Consider the special case in which γ = 3β1 − β4. In this case,

Var(γ̂) = w2
1 Var(β̂1) + w2

4 Var(β̂4) + 2w1w4 Cov(β̂1, β̂4) (27)

= 9 Var(β̂1) + Var(β̂4)− 6 Cov(β̂1, β̂4). (28)

The variance of γ̂ depends on Cov(β̂1, β̂4) as well as on the variances
of β̂1 and β̂4.

When that covariance is large and positive, Var(γ̂) may be small, even
when Var(β̂1) and Var(β̂4) are both large.

Just looking at standard errors of the β̂i can be extremely misleading
when we care about functions of the βi.

Instead of using (28), we may be able to rearrange the regression so
that γ is estimated directly. Or use lincom in Stata.
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The Variance of Forecast Errors

Suppose we have computed β̂ and wish to predict yj, for j not in
i = 1, . . . , N, using observed regressors Xj.

The forecast of yj is Xjβ̂. The prediction error, or forecast error, has
mean zero, and variance

E(yj − Xjβ̂)
2 = E(Xjβ0 + uj − Xjβ̂)

2 (29)

= E(u2
j ) + E(Xjβ0 − Xjβ̂)

2 (30)

= σ2
0 + Var(Xjβ̂). (31)

The first equality depends on correct specification.
The second depends on disturbances being serially uncorrelated,
which ensures that E(ujXjβ̂) = 0.

The third uses the fact that β̂ is assumed to be unbiased.
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The Variance of Forecast Errors

Under classical assumptions,

Var(yj − Xjβ̂) = σ2
0 + σ2

0 Xj(X⊤X)−1Xj
⊤. (32)

The first term is the variance of uj. The second term arises because we
use β̂ instead of β0.

Thus the variance of the forecast error is greater than the variance of
the disturbance uj.

In contrast, as we will see shortly, the variance of the residual ûi is less
than the variance of the disturbance ui.

Suppose the yi were not generated by y = Xβ + u but by the DGP

y = Zγ0 + u, (33)

where some columns of Z may belong to S(X). Thus the model we
estimate is misspecified.
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If the regressors are fixed,

β̂ = (X⊤X)−1X⊤Zγ0 + (X⊤X)−1X⊤u (34)

= β0 + (X⊤X)−1X⊤u, (35)

where the pseudo-true parameter vector β0 is (X⊤X)−1X⊤Zγ0.

The expected squared forecast error based on the false model
y = Xβ + u is

E(yj − Xjβ̂)
2 = E(Zjγ0 + uj − Xjβ̂)

2

= E(u2
j ) + E(Zjγ0 − Xjβ̂)

2 (36)

= E(u2
j ) + E(Zjγ0 − Xjβ0 + Xjβ0 − Xjβ̂)

2 (37)

= σ2
0 + E(Zjγ0 − Xjβ0)

⊤(Zjγ0 − Xjβ0) + Var(Xjβ̂). (38)

The middle term in the last line is essentially a squared bias.
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The Variance of Forecast Errors

Under classical assumptions, Var(Xjβ̂) = σ2
0 Xj(X⊤X)−1Xj

⊤.

Thus the expected squared forecast error for the false model is equal to
the one for the true model, given in (32), plus a squared bias term.

If Xjβ0 provides a good approximation to Zjγ0, then the middle term
in (38) will be small.

But if it provides a poor approximation, the middle term may be large.

In that case, the expected squared forecast error may be much larger
than expression (32) suggests.

We conclude that forecast errors will generally be larger than residuals
for three reasons:

Var(ui) > Var(ûi) for all i (to be proved).
Var(Xjβ̂) > 0 because β̂ is random.

E(Zjγ0 − Xjβ0)⊤(Zjγ0 − Xjβ0) > 0.

September 12, 2024 20 / 20


	Covariance Matrices and Precision Matrices
	The OLS Covariance Matrix
	Precision of the Least-Squares Estimates
	Linear Functions of Parameter Estimates
	The Variance of Forecast Errors

