
The Frisch-Waugh-Lovell Theorem

The Frisch-Waugh-Lovell Theorem

It is often useful to take deviations from the mean. Suppose that

y = β1ι + β2x + u. (1)

If x̄ ≡ N−1 ∑N
i=1 xi, we can define z, the vector of deviations from the

mean, as z ≡ x − x̄ι.

The vector z is easily seen to be orthogonal to ι, because

ι⊤z = ι⊤(x − x̄ι) = Nx̄ − x̄ι⊤ι = Nx̄ − Nx̄ = 0. (2)

In this case, the vector z is the centered version of the vector x.

Centering can be performed algebraically with the orthogonal
projection matrix Mι:

Mιx = (I − Pι)x = x − ι(ι⊤ι)−1ι⊤x = x − x̄ι = z. (3)
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If we rewrite equation (1) in terms of z, it becomes

y = (β1 + β2 x̄)ι + β2z + u = α1ι + α2z + u. (4)

From (4), it is evident that

α1 = β1 + β2 x̄, and α2 = β2. (5)

The estimated version of (4) is

y = α̂1ι + α̂2z + û = α̂1ι + β̂2z + û. (6)

Since one of the regressors is a constant, ι⊤û = ∑N
i=1 ûi = 0.

If we had centered y as well as x, we could have regressed y − ȳι on
z = x − x̄ι. We would have obtained the same estimate β̂2.
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Now consider a model with two groups of regressors:

y = X1β1 + X2 β2 + u, (7)

where X1 is N × k1, X2 is N × k2, and X = [X1 X2], with k = k1 + k2.

We could just regress y on X1:

y = X1β1 + u1. (8)

The fitted values are then

P1y = PX1y = X1(X1
⊤X1)

−1X1
⊤y. (9)

An extremely important property of P1 is that

P1PX = PXP1 = P1. (10)

This follows from the fact that PXX1 = X1. This fact also implies that
M1MX = MXM1 = MX .
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Consider the regression (7) again. Suppose we regress y on X1 and
also regress every column of X2 on X1. These regressions yield
residuals M1y and M1X2.

The FWL regression is

M1y = M1X2 β2 + residuals. (11)

It yields the same vector of OLS estimates β̂2 as regression (7), and also
the same vector of residuals.

In geometric terms, we have projected y and X2 off the subspace
S(X1), or onto the subspace S⊥(X1).

To be more colloquial, we have partialed out the regressors in X1.
This is extremely useful in many theoretical contexts, and it can
also make computation much faster in many cases.
Cross-section and panel regressions very often use fixed effects,
which are usually partialed out for computational reasons.
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The FWL Theorem has two parts:
1 OLS estimates of β2 from regressions (7) and (11) are identical.
2 OLS residuals from regressions (7) and (11) are identical.

The estimate of β2 from (11) is

β̂2 = (X2
⊤M1X2)

−1X2
⊤M1y. (12)

Let β̂1 and β̂2 denote the two vectors of OLS estimates from (7). Then

y = PX y + MX y = X1β̂1 + X2 β̂2 + MX y. (13)

Premultiplying the leftmost and rightmost expressions in (13) by
X2

⊤M1 yields
X2

⊤M1y = X2
⊤M1X2 β̂2. (14)
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The r.h.s. of (14) has only one term, whereas there were three in (13).
What happened?

The term X1β̂1 dropped out because M1 annihilates X1.

The term MX y dropped out because

X2
⊤M1MX y = X2

⊤MX y = 0. (15)

We can now solve (14) for β̂2:

β̂2 = (X2
⊤M1X2)

−1X2
⊤M1y, (16)

which is (12).

This proves part 1 of the theorem.
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If we had premultiplied (13) by M1 instead of by X2
⊤M1, we would

have obtained
M1y = M1X2 β̂2 + MX y, (17)

where the last term is unchanged from (13) because M1MX = MX .

The regressand in (17) is the regressand from the FWL regression (11).

The first term on r.h.s. of (17) is vector of fitted values from (11), so the
second term must be the residual vector.

But MX y is also the residual vector from (7)!

This proves part 2 of the theorem.

The FWL Theorem has many useful applications in both theory and
computation. These go far beyond the linear regression model.

Using FWL often makes it unnecessary to invert partititioned matrices.
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A simple way to model seasonality is to use seasonal dummies.

With quarterly data, we need four dummies, s1 through s4. sj is 1 in
the j th quarter and 0 in all other quarters. Evidently,

s1 + s2 + s3 + s4 = ι. (18)

We must drop either the constant term or one of the seasonal dummies.

It does not matter what we drop, since

S(s1, s2, s3, s4) = S(ι, s2, s3, s4) = S(ι, s1, s3, s4) = . . . . (19)

We can retain the constant and use the dummies

s′1 = s1 − s4, s′2 = s2 − s4, s′3 = s3 − s4. (20)

For each complete year, these new dummy variables sum to 0.
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The regression including the seasonal dummies is

y = δ0ι + δ1s′1 + δ2s′2 + δ3s′3 + Xβ + u. (21)

For any sample whose size is a multiple of 4, each of the s′j, j = 1, 2, 3,
is orthogonal to the constant.

For t in season i, j = 1, 2, 3, the constant term is δ0 + δi. For t belonging
to season 4, it is δ0 − δ1 − δ2 − δ3. Thus the average of the constants for
all four seasons is just δ0, the coefficient of the constant, ι.

Let S denote any N × 4 matrix that spans the constant and the four
seasonal variables si. Then regression (21) can be written as

y = Sδ + Xβ + u. (22)

So can all of the equivalent regressions that write the constant and the
seasonal dummies in different ways.
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The FWL Theorem implies that the estimates β̂ and the residuals û
from (22) can also be obtained by running the FWL regression

MS y = MS Xβ + residuals, (23)

where, as the notation suggests, MS ≡ I − S(S⊤S)−1S⊤.

The effect of the projection MS on y and on the explanatory variables
in the matrix X can be considered as a crude form of seasonal
adjustment, which also removes the sample means.

Notice that MS x just subtracts the vector x̄q from x, where the j th

element of x̄q is the quarterly mean of all the elements of x that
correspond to whatever quarter observation j belongs to.

Partialing out the seasonal dummy variables is extremely cheap and
easy. We just calculate four quarterly means and subtract them.

Partialing out other types of fixed effect can be done in the same way.
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The equivalence of (22) and (23) is sometimes used to claim that it does
not matter whether one uses “raw” data, along with seasonal
dummies, or seasonally adjusted data.

This is nonsense, because actual seasonal adjustment procedures are
far more complicated than using seasonal dummies.

Seasonally adjusting any time series that includes 2020-1 and 2020-2 is
going to be extremely difficult!

We can remove the effect of a linear time trend in the same way that
we remove the effect of seasonality.

The original equation is

y = γ1ι + γ2T + Xβ + u, (24)

where Tt = t. If we partial out T, we obtain data that have been
detrended (badly). This is what Frisch and Waugh (1933) was about.
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Data with Two Subscripts

Let xgi denote the i th observation within group g on x. If there are G
groups and the g th group has Ng observations, a regression model is

ygi = Xgiβ + ugi, g = 1, . . . , G, i = 1, . . . , Ng, (25)

where ygi and ugi are scalars, Xgi is a row vector of length k, and
N = ∑G

g=1 Ng.

The data can be ordered in any way, but for computational purposes it
is easiest to order them first by g and then by i.

Suppose the constant term differs across each of the G groups. Then

ygi = Xgiβ + ηg + ugi, g = 1, . . . , G, i = 1, . . . , Ng, (26)

where the ηg are scalars that are often called fixed effects.
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Instead of having a single constant term for all groups, the
fixed-effects model (26) can be thought of as having G different
constant terms, one for each group.

Regression (26) can be written in matrix notation as

y = Xβ + Dη+ u, (27)

where y and u have typical elements ygi and ugi, X has typical row Xgi,
and D contains G dummy variables.

Each column of D corresponds to one fixed effect. The constant vector
ι is a linear combination of the columns of D.

To ensure that the matrix of regressors [X D] has full rank, X must not
contain either a constant or any group of variables that collectively
add up to a constant vector.

The FWL Theorem applies directly to (27). If we let MD denote
I − D(D⊤D)−1D⊤, then, by the FWL Theorem,
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β̂ = (X⊤MDX)−1X⊤MDy. (28)

Each element of MDx is the deviation of xgi from its group mean x̄g. Of
course, we never actually compute MD.

Using (for example) the areg command in Stata, it is easy to run
regressions with hundreds or even thousands of fixed effects.

In many cases, we do not care about the η̂. If we do care, they are not
hard to obtain.

Replacing β and u in (27) by their estimates from the FWL regression
and rearranging yields the equation

Dη̂ = y − Xβ̂ − û. (29)

Premultiplying both sides of this equation by D⊤, we obtain

D⊤Dη̂ = D⊤y − D⊤Xβ̂ − D⊤û = D⊤y − D⊤Xβ̂. (30)
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The second equality in (30) holds because the residuals sum to zero
over each of the G groups.

Solving equations (30) yields the result that

η̂ = (D⊤D)−1D⊤(y − Xβ̂). (31)

This is just the vector of OLS estimates from a regression of y − Xβ̂ on
D. It can be computed easily as

η̂ =


ȳ1 − X̄1β̂

ȳ2 − X̄2β̂
...

ȳG − X̄Gβ̂

. (32)

Thus the estimated fixed effect η̂g is simply the sample mean of
ygi − Xgiβ̂ over the observations that belong to group g.
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Two-Way Fixed Effects

The two-way fixed effects, or TWFE, model is extremely popular. It is
often written as

yghi = β1 + Xghi β + γg + δh + ughi. (33)

If there are K explanatory variables and controls in the row vector Xghi,
then the total number of regressors is K + G + H − 1.

It is possible, but tricky, to partial out both sets of fixed effects. We just
need to find an efficient way to compute

M[G H]x =

(
I − [G H]

[
G⊤G G⊤H
H⊤G H⊤H

]−1

[G H]⊤
)

x (34)

for any N-vector x. Here G is the matrix of fixed effects for the G
dimension, and H is the matrix of fixed effects for the H dimension.
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In the simple case where there is just one observation for each gh pair
(think of g as indexing places and h as indexing time), we can define

z̄g· =
1
H

H

∑
h=1

zgh, z̄·h =
1
G

G

∑
g=1

zgh, and z̄ =
1

GH

G

∑
g=1

H

∑
h=1

zgh. (35)

Then, where zgh represents both a typical element of y and a typical
element of every column of X, compute

z̈gh = zgh − z̄g· − z̄·h + z̄. (36)

Regressing the ÿgh on the ẍk
gh for k = 1, . . . , K is equivalent to running

the TWFE regression (33).

It is common to use t and T instead of h and H when discussing the
TWFE model, especially for the special case of N = GT. Using H
makes it clear that the second dimension does not have to be time.
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Each element of β̂ is a weighted average of the elements of y.

Define ci as the i th row of the matrix (X⊤X)−1X⊤. Then β̂i = ciy.

Because each element of β̂ is a weighted average, some observations
may affect the value of β̂ much more than others do.

If we run the regression

y = β1ι + β2x + u (37)

using only the 99 observations represented by small dots in the figure,
the fitted values all lie on the regression line,

ŷ = β̂1 + β̂2 x. (38)

The extra points in the figure have high leverage because their x
coordinate is much larger than that of any other point in the sample.
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Two Observations with High Leverage
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Observations are said to be influential if deleting them from the
sample changes some elements of β̂ substantially.

The two high-leverage points in the figure are influential.
We can “remove” observation i by using the dummy vector ei,
which has i th element 1 and all other elements 0.
The vector ei is called a unit basis vector, because its norm is 1,
and because all the ei, for i = 1, . . . , N, span the full space EN.

Including ei as a regressor leads to a regression of the form

y = Xβ + αiei + u, (39)

where α̂i will be the residual when observation i is deleted.

This is equivalent to the FWL regression

Mi y = Mi Xβ + residuals, (40)

where Mi ≡ Mei = I − ei(ei
⊤ei)

−1ei
⊤.
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Mi y is just y with its i th component replaced by 0.

Since ei
⊤ei = 1, and because ei

⊤y is just the i th component of y,

Mi y = y − eiei
⊤y = y − yi ei. (41)

Thus yi is subtracted from y for the i th observation only.

Similarly, Mi X is just X with its i th row replaced by 0s.

Running regression (40) gives the same parameter estimates as those
that would be obtained if observation i were deleted from the sample.

The fitted values and residuals from regression (39) are given by

y = Xβ̂(i) + α̂iei + MZ y, (42)

where β̂(i) is the vector of OLS estimates based on all observations
except the i th, and MZ projects off S(X, ei).
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Starting with (42), a little algebra shows that

X(β̂(i) − β̂) = − α̂iPXei. (43)

We can compute the difference between β̂(i) and β̂ using this equation.

We previously applied the FWL Theorem to (39) to find β̂(i). We can
also use it to find that

α̂i =
ei
⊤MX y

ei
⊤MXei

. (44)

The numerator here is the i th element of MX y. The denominator is the
i th diagonal element of MX .

It follows that
α̂i =

ûi

1 − hi
, (45)

where hi denotes the i th diagonal element of PX , sometimes called the
hat matrix, because Xβ̂ = PX y = ŷ.
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Using (43) and (44), we find that

β̂(i) − β̂ =
−1

1 − hi
(X⊤X)−1Xi

⊤ûi. (46)

Thus how influential an observation is depends on both ûi and hi.

Aside: Equations (45) and (46) make it very easy to compute jackknife
estimates and perform delete-one cross-validation.

Another way to measure influence is to look at the impact of each
observation on its own residual (and fitted value):

û(i)
i − ûi =

ûi

1 − hi
− ûi =

ûi − (1 − hi)ûi

1 − hi
=

hi

1 − hi
ûi. (47)

Observations with large hi have high leverage or are leverage points.
A leverage point has the potential to be influential, depending on ûi.

Clusters can also have high leverage and perhaps be influential. See
MacKinnon, Neilsen, and Webb (Stata Journal, 2023).
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We can express hi as

hi = ei
⊤PXei = ∥PXei∥2. (48)

Since the rightmost expression here is a square, hi ≥ 0.

Because ∥ei∥ = 1, we find that hi = ∥PXei∥2 ≤ 1. Thus

0 ≤ hi ≤ 1. (49)

Moreover, when there is a constant term, hi ≥ 1/N.

If X consisted of the constant vector ι, then hi = ei
⊤Pιei = 1/N.

If other regressors are present, then

1/N = ∥Pιei∥2 = ∥PιPXei∥2 ≤ ∥PXei∥2 = hi. (50)

There is a special case in which hi equals 1. If one column of X is ei,
then hi = ei

⊤PXei = ei
⊤ei = 1.
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It is shown in Section 2.6 that, when there are N observations and
k regressors, the average of the hi is k/N.

This uses the fact that Tr(PX) = k.

When the diagonal elements of PX are all close to their average value,
no observation has very much leverage. Such an X matrix is said to
have a balanced design.

When some of the hi are much larger than k/N, and others inevitably
smaller, the X matrix is said to have an unbalanced design.

The hi tend to be larger for values of the regressors that are farther
away from their average over the sample.

The figure shows the hi for 100 observations in a simple regression
model. Average value is 2/100 = 0.02, but hi varies from 0.0100 for
values of xi near the sample mean to 0.0695 for the largest value of xi,
which is about 2.4 standard deviations above the sample mean.
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Leverage as a Function of the Value of a Regressor
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