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Introduction

Introduction

ECON 850 is the first course of a two-course sequence in
econometrics intended for Ph.D. students.
Classes: Tuesday 10:00–11:20, Thursday 8:30–9:50. Dunning 213
(Hand-Purvis Conference Room).
It is assumed that all students have taken a serious masters-level
econometrics course.
Familiarity with basic concepts of mathematical statistics would
also be very helpful.
There will be extensive use of matrix algebra, including projection
matrices, and the geometry of vector spaces.
Although considerable time will be devoted to asymptotic theory,
it will not be developed in a fully rigorous way. That will be done
in ECON 851.
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Introduction

The first two-thirds of the course will be based on the first six
chapters of the never-to-be-finished second edition of Econometric
Theory and Methods by R. Davidson and J. G. MacKinnon.
Every student will be provided with PDF copy.
The remainder of the course will use material from the first
edition of ETM, from the 1993 book Estimation and Inference in
Econometrics, and from slides based on “Cluster-robust inference:
A guide to empirical practice” (Journal of Econometrics, 2023).
Both books may be legally downloaded as PDF files.
All students are assumed to be familiar with Stata and/or R.
Assignments could probably also be done in a matrix language
such as Matlab, Octave, or Ox, but it would be more work.
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Introduction

Course Outline

1 Introductory material based on Chapter 1 of ETM2.
2 The Geometry of Least Squares—Chapter 2 of ETM2.
3 Basic Properties of OLS—Chapter 3 of ETM2.
4 Introduction to Asymptotic Theory—Chapter 3 of ETM2.
5 Hypothesis Testing—Chapter 4 of ETM2.
6 Confidence Intervals—Chapter 5 of ETM2.
7 Bootstrap Methods—parts of Chapter 6 of ETM2.
8 Methods for Clustered Data—the Guide.
9 Generalized Least Squares—Chapter 7 of ETM.
10 Instrumental Variables—Chapter 8 of ETM.
11 Nonlinear Least Squares—Chapter 6 of ETM + supplement
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Introduction

There will be four assignments, which collectively will account for
20% of the final mark. These assignments will make extensive use
of the computer.
The midterm examination will be worth 20% of the final mark.
The date has not yet been determined.
The final examination will be worth 60% of the final mark.
The identity of the T.A. is not yet known.
Tutorial: TBA
T.A. Office Hours: TBA
http://qed.econ.queensu.ca/pub/faculty/mackinnon/econ850/
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Some Properties of PDFs and CDFs

Some Properties of PDFs and CDFs

Random variables may be discrete (binary, counts) or continuous.
A discrete random variable X takes on values x1, x2, . . ., each with
probability p(xi), such that ∑ i p(xi) = 1.
Number of possible values of i may be finite (just 2 for binary r.v.)
or countably infinite (for count r.v.).
A continuous random variable X can take on real values. The
realized value of X is often denoted x.
The distribution of X is described by a cumulative distribution
function, or CDF: F(x) = Pr(X ≤ x).
0 ≤ F(x) ≤ 1.
F(x) tends to 0 as x → −∞.
F(x) tends to 1 as x → +∞.
F(x) must be a weakly increasing function of x.
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Some Properties of PDFs and CDFs

The probability that x = X is always zero.
If a < b, then Pr(X ≤ b) = Pr(X ≤ a) + Pr(a < X ≤ b).
Therefore, Pr(a ≤ X ≤ b) = F(b)− F(a).
If b = a, then we get F(a)− F(a) = 0.

The probability density function, or PDF, is just the derivative of the
CDF: f (x) ≡ F′(x). Evidently,∫ ∞

−∞
f (x)dx =

∫ ∞

−∞
F ′(x)dx = F(∞)− F(−∞) = 1. (1)

More generally,∫ b

a
f (x)dx = Pr(a ≤ X ≤ b) = F(b)− F(a). (2)

But if we set b = a, we just get F(a)− F(a) = 0.
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Some Properties of PDFs and CDFs

It is evident that f (x) ≥ 0, because F(x) is non-decreasing.
f (x) is not bounded above by unity, because the value of a PDF at
a point x is not a probability.
The PDF of the standard normal distribution is

ϕ(x) = (2π)−1/2 exp
(
− 1

2 x2). (3)

The CDF of the standard normal distribution is

Φ(x) =
∫ x

−∞
ϕ(y)dy. (4)

This has no closed-form solution.
The maximum of the PDF ϕ(x) is at x = 0, where the slope of the
CDF Φ(x) is steepest.
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Some Properties of PDFs and CDFs
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Some Properties of PDFs and CDFs

For a continuous random variable, the population mean is

µ ≡ E(x) ≡
∫ ∞

−∞
x f (x)dx. (5)

Since x can range from −∞ to ∞, this integral may well diverge.
Not every continous random variable has a mean!
The k th uncentered moment of x is

mk(x) ≡
∫ ∞

−∞
xk f (x)dx. (6)

The k th central moment of the distribution of x is

µk ≡ E(x − µ)k =
∫ ∞

−∞
(x − µ)k f (x)dx. (7)

Central moments are invariant to µ.
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Some Properties of PDFs and CDFs

The second central moment is the variance, Var(x) = σ2.
The square root of the variance, σ, is called the standard
deviation.
Estimates of standard deviations of parameter estimates are called
standard errors.
If x̄ is the sample mean of xi, i = 1, . . . , N, then the sample
standard deviation is

s.d.(x) =

(
1

N − 1

N

∑
i=1

(xi − x̄)2

)1/2

. (8)

Under the assumption that the xi are uncorrelated,

s.e.(x̄) =
1√
N

s.d.(x). (9)
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Joint Distributions

Joint Distributions

A continuous, bivariate random variable (x1, x2) has the
distribution function

F(x1, x2) = Pr
(
(X1 ≤ x1) ∩ (X2 ≤ x2)

)
. (10)

Thus the joint CDF F(x1, x2) is the joint probability that both
X1 ≤ x1 and X2 ≤ x2.
The joint density function is

f (x1, x2) =
∂2F(x1, x2)

∂x1∂x2
. (11)

Like all densities, this joint PDF integrates to one:∫ ∞

−∞

∫ ∞

−∞
f (x1, x2)dx1dx2 = 1. (12)
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Joint Distributions

The joint CDF is related to the joint PDF by

F(x1, x2) =
∫ x2

−∞

∫ x1

−∞
f (y1, y2)dy1dy2. (13)

X1 and X2 are said to be independent if F(x1, x2) is the product of
the marginal CDFs of x1 and x2:

F(x1, x2) = F(x1, ∞)F(∞, x2) = F(x1)F(x2). (14)

The marginal density of x1 is

f (x1) =
∫ ∞

−∞
f (x1, x2)dx2 =

∂F(x1, ∞)

∂x1
. (15)

Thus f (x1) is obtained by integrating x2 out of the joint density.
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Joint Distributions

If x1 and x2 are independent, so that (14) holds, then

f (x1, x2) = f (x1) f (x2). (16)

Suppose that A and B are any two events. Then Pr(A |B) and is
defined implicitly by the equation

Pr(A ∩ B) = Pr(B) Pr(A |B). (17)

Evidently, Pr(B) ̸= 0, since we cannot condition on B when
Pr(B) = 0.
Equation (17) underlies all of Bayesian statistics.

Pr(A ∩ B) = Pr(A)Pr(B |A) (18)

is just (17) with A and B interchanged.
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Joint Distributions

Equations (17) and (18) imply that

Pr(A |B) =
Pr(B |A) Pr(A)

Pr(B)
. (19)

For Bayesian estimation, the sample y plays the role of B, and the
parameter vector θ plays the role of A. Thus we have

f (θ | y) =
f (y | θ) f (θ)

f (y)
, (20)

where the f (·) denote densities. This is one version of Bayes’ Rule.
In words, the posterior density is equal to the likelihood times
the prior density, divided by the unconditional density of y. If we
ignore the denominator, then

posterior ∝ prior × likelihood.
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Joint Distributions

The conditional density, or conditional PDF, of X1 for a given
value x2 is

f (x1 | x2) =
f (x1, x2)

f (x2)
. (21)

If we let y denote x1 and x denote x2, then the conditional
expectation of y given x is

E(y | x) = h(x), (22)

where h(x) could be any sort of function. It is a (deterministic)
function that gives us E(y) for every possible value of x.
A very simple example is the regression function

E(y) = β1 + β2x. (23)

Notice that there is no “error term” or “disturbance” here.
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Joint Distributions

The Law of Iterated Expectations is very useful. It tells us that

E
(
E(X1 |X2)

)
= E(X1). (24)

In words, the unconditional expectation of X1 is equal to the
expectation of the conditional expectation.
Any deterministic function of a conditioning variable x2 is its own
conditional expectation. Thus

E(X2 |X2) = X2 and E(X2
2 |X2) = X2

2. (25)

Similarly,
E
(
X1 h(X2) |X2

)
= h(X2)E(X1 |X2) (26)

for any deterministic function h(·).
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Joint Distributions

An important special case arises when E(X1 |X2) = 0. In that case,
for any function h(·), E(X1h(X2)) = 0, because

E
(
X1 h(X2)

)
= E

(
E(X1 h(X2) |X2)

)
= E

(
h(X2)E(X1 |X2)

)
= E

(
(h(X2)0

)
= 0.

(27)

The first two equalities follow from (24), the Law of Iterated
Expectations, and (26), respectively.

Since E(X1 |X2) = 0, the third equality then follows immediately.

This result will prove to be useful when we discuss estimation of
regression models based on the method of moments.

James G. MacKinnon Economics 850 September, 2024 18 / 27



The Specification of Regression Models

The Specification of Regression Models

Because E(ui | xi) = 0,

E(yi | xi) = β1 + β2 xi + E(ui | xi) = β1 + β2 xi. (28)

Suppose that we estimate the model (28) when in fact

yi = β1 + β2 xi + β3 x2
i + vi. (29)

Then
E(ui | xi) = E

(
β3 x2

i + vi | xi
)
= β3 x2

i , (30)

which must be nonzero unless xi = 0.
Should the observations in a sample be indexed by t = 1, . . . , T or
i = 1, . . . , N?
ETM mostly uses t = 1, . . . , n, but my slides will use i = 1, . . . , N
except for time series.
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The Specification of Regression Models

The information set is the set of potential explanatory variables,
denoted Ωi, which is what we condition on. Instead of (28),

E(yi |Ωi) = β1 + β2 xi. (31)

Exogenous and endogenous variables.
Disturbances rather than error terms.
These are often assumed to be independent and identically
distributed, or IID.
Serial correlation can arise when observations are ordered by
time. Then E(ut | us) ̸= 0, perhaps only when |t − s| is small.
Heteroskedasticity means that Var(ui) is not constant. It may
depend on Xi, or it may depend on lagged values of Var(ui).
Clustering implies that Cov(ugi ugj) ̸= 0. Here the sample is
divided into clusters indexed by g.
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The Specification of Regression Models

Equation (31), by itself, is not a complete specification. If a model is
completely specified, we can simulate it. For the regression model (28):

Fix the sample size, N.
Choose β1 and β2, the parameters of the deterministic
specification.
Obtain the N values xi, i = 1, . . . , N, of the explanatory variable.
Evaluate β1 + β2 xi for i = 1, . . . , N.
Choose the distribution of the disturbances, if necessary
specifying parameters such as mean and variance.
Use a random-number generator, or RNG, to generate values
of ui.
Form the simulated values yi by adding the disturbances to the
values of the regression function.
For a dynamic model like yt = β1 + β2yt−1 + ut, the data need to
be generated recursively.
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The Specification of Regression Models

Alternative models for the mean of yi conditional on xi:

yi = β1 + β2 xi + β3 x2
i + ui (32)

yi = γ1 + γ2 log xi + ui (33)

yi = δ1 + δ2
1
xi

+ ui. (34)

These are all linear models. A nonlinear (but rarely sensible) model is

yi = eβ1xβ2
i2 xβ3

i3 + ui. (35)

A better model is
yi = eβ1xβ2

i2 xβ3
i3 evi . (36)

If we take logarithms of both sides, we get

log yi = β1 + β2 log xi2 + β3 log xi3 + vi, (37)

which is a loglinear regression model.
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Method-of-Moments Estimation

Method-of-Moments Estimation

The method of moments, or MM, replaces population quantities by
sample analogs.

Suppose there is just one parameter (β1, the population mean) to
estimate. The sample mean of the disturbances is

1
N

N

∑
i=1

ui =
1
N

N

∑
i=1

(yi − β1). (38)

Equating this to 0 yields

1
N

N

∑
i=1

yi − β1 = 0. (39)

The MM estimate β̂1 is just the mean of the observed values:

β̂1 =
1
N

N

∑
i=1

yi. (40)
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Method-of-Moments Estimation

For a simple linear regression model with two parameters, (39)
becomes

1
N

N

∑
i=1

(yi − β1 − β2xi) = 0. (41)

We need one more equation to solve for β̂1 and β̂2.

We use the fact that E(ui | xi) = 0. By the law of iterated expectations,

E(xiui) = E
(
E(xiui | xi)

)
= E

(
xi E(ui | xi)

)
= 0. (42)

Thus we can supplement (41) by the following equation:

1
N

N

∑
i=1

xi(yi − β1 − β2 xi) = 0. (43)
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Method-of-Moments Estimation

Equations (41) and (43) can be written as

β1 +

(
1
N

N

∑
i=1

xi

)
β2 =

1
N

N

∑
i=1

yi (44)(
1
N

N

∑
i=1

xi

)
β1 +

(
1
N

N

∑
i=1

x2
i

)
β2 =

1
N

N

∑
i=1

xi yi. (45)

After multiplication by N, these equations become[
N ∑N

i=1 xi

∑N
i=1 xi ∑N

i=1 x2
i

] [
β1
β2

]
=

[
∑N

i=1 yi

∑N
i=1 xi yi

]
. (46)

But (46) is just a special case of

X⊤Xβ = X⊤y, (47)

where X⊤X is the matrix of sums of squares and cross-products of
every regressor with every other regressor.
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Method-of-Moments Estimation

Thus we obtain the famous formula for the ordinary least squares, or
OLS, estimator:

β̂ = (X⊤X)−1X⊤y. (48)

In general, of course, there are k moment conditions, one for each
regressor:

X⊤(y − Xβ) = 0. (49)

Here we treat the constant term as a column of 1s within X.

We could also obtain β̂ by minimizing the sum of squared residuals

SSR(β) =
N

∑
i=1

(yi − Xi β)
2

= (y − Xβ)⊤(y − Xβ)

= y⊤y − 2y⊤Xβ + β⊤X⊤Xβ.

(50)
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Method-of-Moments Estimation

The first-order conditions are

− 2X⊤(y − Xβ) = 0. (51)

These can be rewritten as

X⊤Xβ = X⊤y. (52)

The solution is evidently

β̂ = (X⊤X)−1X⊤y. (53)

Here, as before, we have explicitly assumed that X has full rank k.
Otherwise, X⊤X would not be invertible.
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