Queen's University School of Graduate Studies and Research Department of Economics

Economics 850 Fall, 2024

Professor James MacKinnon

Midterm Examination

October 24, 2024. Time Limit: 80 minutes

Please answer all 3 questions. The marks for each question are shown in square brackets. All answers should be as short as it is reasonably possible to make them.

- 1. You are given an N-vector \boldsymbol{y} and an $N \times k$ matrix \boldsymbol{X} , with N > k. You regress \boldsymbol{y} on \boldsymbol{X} to obtain $\hat{\boldsymbol{\beta}}$, a residual vector $\hat{\boldsymbol{u}}$, and a vector of fitted values $\hat{\boldsymbol{y}}$.
 - a) Suppose you regress y on \hat{y} . What can you say about the coefficient estimate? How will the SSR from this regression compare with the one from the original regression?
 - b) Suppose you regress \hat{u} on X. What can you say about the coefficient estimates? How will the SSR from this regression compare with the one from the original regression?
 - c) Suppose you create a dummy variable d equal to 1 for observation 1 and equal to 0 for all other observations. If you regress y on X and d, how will the SSR from this regression compare with the one from the original regression? How will it compare with the original sum of squared residuals for observations 2 through N only?
 - d) For the regression of part c), how is the coefficient on d related to the first element of \hat{u} ? Could you have calculated this coefficient without running this regression?
- **2.** Consider the model

$$y_i = \beta_1 + \beta_2 d_i + u_i, \quad u_i \sim \text{IID}(0, \sigma^2), \quad i = 1, \dots, N,$$
 (1)

where d_i is a binary variable that equals either 0 or 1.

- a) Under the stated assumptions, explain how to construct a 95% confidence interval for β_2 . Is this interval exact in finite samples? Why or why not?
- b) Consider two different samples for the model (1). One has $\sigma = 1$ and N = 50, and the other has $\sigma = 2$ and N = 200. Under what circumstances, if any,

- would you expect the 95% confidence intervals for β_2 from the two samples to be roughly the same length? Explain.
- c) Suppose the probability that $d_i = 1$ is δ and may vary across samples. If you have two independent samples with N = 100 and the same value of σ , but one has $\delta = 0.2$ and one has $\delta = 0.25$, which sample will probably yield the shortest confidence interval. Will this be true for every such pair of samples? Explain.

[30 marks]

3. Consider the linear regression model

$$y = X_1 \beta_1 + X_2 \beta_2 + u, \quad u \sim \text{NID}(\mathbf{0}, \sigma^2 \mathbf{I}),$$
 (2)

where there are N observations and $k = k_1 + k_2$ regressors, with the regressors in X_1 exogenous and the ones in X_2 predetermined but not exogenous.

- a) Write the F statistic for $\beta_2 = \mathbf{0}$ explicitly as a function of N, k, k_2 , \mathbf{y} , \mathbf{X}_1 , and \mathbf{X}_2 . It will probably be convenient to use projection matrices that project onto or off the subspaces spanned by \mathbf{X}_1 , \mathbf{X}_2 , and/or $\mathbf{X} = [\mathbf{X}_1 \ \mathbf{X}_2]$.
- b) To what distribution should you compare the F statistic of part a)? Will this F statistic be exactly distributed according to this distribution? Will it follow this distribution asymptotically? Explain briefly.
- c) Write down the Wald statistic for $\beta_2 = \mathbf{0}$ in the model (2). How is it related to the F statistic of part a)? How is it distributed asymptotically under the null hypothesis?
- d) When the null hypothesis is true, the Wald statistic of part c) must be $O_p(N^a)$. When $\beta_2 = \beta_2^0 \neq \mathbf{0}$, the Wald statistic must instead be $O_p(N^b)$. Exactly what are the values of a and b here?