Queen's University School of Graduate Studies and Research Department of Economics

Economics 850 Fall, 2023

Professor James MacKinnon

Midterm Examination

October 24, 2023. Time Limit: 80 minutes

Please answer all 3 questions. The marks for each question are shown in square brackets. All answers should be as short as it is reasonably possible to make them.

1. Consider the linear regression model

$$y_i = \beta_1 + \beta_2 x_i + u_i, \quad i = 1, \dots, N.$$

where the x_i are independent draws from the $\chi^2(1)$ distribution, and the u_i are independent draws from a normal distribution with mean 0 and unknown variance.

- a) Is the OLS estimate of β_2 biased or unbiased in this case? Explain very briefly.
- b) Is the OLS estimate of β_2 consistent or inconsistent in this case? Explain very briefly.
- c) It is well-known that the leverage of each observation in the sample is proportional to a number called h_i . How would you compute the h_i in this case? If you sorted the observations by the value of x_i , which observation would have the highest leverage?
- d) Suppose there are 100 observations. The OLS estimate of β_2 using the full sample is $\hat{\beta}_2$. If you throw away the 10 observations with the 10 largest values of h_i , you now have a sample with 90 observations. It yields another OLS estimate, say $\check{\beta}_2$. How is the variance of $\check{\beta}_2$ related to the variance of $\hat{\beta}_2$? Only one of the following statements is true. Which one is it? Briefly explain why.
 - (i) $\operatorname{Var}(\check{\beta}_2) = \frac{10}{9} \operatorname{Var}(\hat{\beta}_2)$.
 - (ii) $\operatorname{Var}(\check{\beta}_2) > \frac{10}{9} \operatorname{Var}(\hat{\beta}_2)$.
 - (iii) $\operatorname{Var}(\check{\beta}_2) < \frac{10}{9} \operatorname{Var}(\hat{\beta}_2)$.
 - (ii) $\operatorname{Var}(\check{\beta}_2)$ may be larger or smaller than $\frac{10}{9}\operatorname{Var}(\hat{\beta}_2)$. [30]

Please turn over. The other two questions are on the back.

2. Consider the linear regression model

$$y = X\beta + u = X_1\beta_1 + X_2\beta_2 + u, \quad u \sim \text{IID}(\mathbf{0}, \sigma^2 \mathbf{I}),$$

where the notation is standard. There are N observations and $k = k_1 + k_2$ regressors.

- a) Derive the covariance matrix of the OLS estimator $\hat{\beta}_2$ using the FWL Theorem.
- b) How would you estimate this matrix in practice? How would you obtain an estimated standard error for $\hat{\beta}_2$? Would the expectation of this standard error equal the true standard deviation of $\hat{\beta}_2$?
- c) Suppose the matrix X_1 in the above regression is replaced by the matrix X_1A , where A is a square matrix with full rank. How will this affect the OLS estimate of β_2 ? Explain very briefly.
- d) Suppose the matrix A of part c) has rank $k_1 r$ instead of rank k_1 . Would replacing X_1 by X_1A affect the OLS estimate of β_2 now? Explain very briefly.
- e) OLS estimation of the model above yields a residual vector $\hat{\boldsymbol{u}}$. What do you know about the SSR $\hat{\boldsymbol{u}}^{\mathsf{T}}\hat{\boldsymbol{u}}$? How is the SSR related to the (unobservable) quantity $\boldsymbol{u}^{\mathsf{T}}\boldsymbol{u}$? What is the expectation of the SSR?

3. Consider the linear regression model

$$y = X\beta + u = X_1\beta_1 + \beta_2x_2 + u, \quad u \sim \text{IID}(\mathbf{0}, \sigma^2\mathbf{I}),$$

where the notation is standard. There are N observations and $k = k_1 + 1$ regressors. All the regressors are assumed to be exogenous.

- a) Explain precisely how you would test the hypothesis that $\beta_2 = 1$ at the .01 level. Would the test you are proposing be exact for finite N?
- b) If the null hypothesis that $\beta_2 = 1$ is true, what can you say about the distribution of the OLS estimator $\hat{\beta}_2$?
- c) Suppose that, in fact, $\beta_2 = 0.75$. Now what can you say about the distribution of the OLS estimator $\hat{\beta}_2$?
- d) Can you compute the power of the test of part a), or at least an asymptotic approximation to its power, under the assumption that $\beta_2 = 0.75$? If so, how?
- e) Based on the procedure you proposed in part d), explain how to compute either an exact or an approximate power function for the test of part a) as a function of the true value of β_2 . What would be (perhaps approximately) the lowest value of this function, and for what value of β_2 would it achieve this value?

[35]