Queen's University School of Graduate Studies and Research Department of Economics

Economics 850 Fall, 2022

Professor James MacKinnon

Midterm Examination

October 25, 2022. Time Limit: 80 minutes

Please answer all 3 questions. The marks for each question are shown in square brackets. All answers should be as short as it is reasonably possible to make them.

- 1. Suppose that you have obtained 100 observations $[y_i, x_i]$ on a regressand y and a regressor x. In your sample, x_i equals 0 for the first 80 observations and 1 for the remaining 20. The model you are concerned with is $y_i = \beta_1 + \beta_2 x_i + u_i$, where the disturbances u_i are assumed to be independent with mean 0.
 - a) According to this model, what is the expectation of y conditional on x = 1? What is the unconditional expectation of y if the probability that x = 1 is the same in the population as in the sample?
 - b) For this sample, some observations, the ones that provide more information about β_2 , have higher leverage than the others. Which observations are the ones with relatively high leverage?
 - c) If the u_i are known to be distributed as NID(0, σ^2), how would you test the hypothesis that $\beta_2 = 0$ at the .05 level? Would this be an exact test?
 - d) Would the test of part c) still be exact if the u_i actually followed the distribution just below, which you (the investigator) do not know?

$$u_i \sim N(0, 1)$$
 with probability 0.9 $u_i \sim N(0, 25)$ with probability 0.1

If you used the test of part c) in this case and obtained a P value of 0.0392, do you think it would be safe to reject the null hypothesis at the .05 level?

[32 marks]

2. Consider the linear regression model

$$y = \beta_1 x_1 + X_2 \beta_2 + u, \quad u \sim \text{IID}(\mathbf{0}, \sigma^2 \mathbf{I}),$$
 (1)

where y, x_1 , and u are n-vectors, and x_2 is an $n \times k_2$ matrix, with $k = k_2 + 1$. Assume that all regressors are exogenous.

- a) If you impose the restriction that $\beta_1 = 1$ and it is false, will the restricted OLS estimator $\tilde{\beta}_2$ be biased or unbiased (in general)?
- b) Briefly explain how to obtain $\tilde{\beta}_2$ using a regression package. What will be $V(\tilde{\beta}_2)$, the actual covariance matrix of $\tilde{\beta}_2$ if the restriction $\beta_1 = 1$ is true, and what will be $\hat{V}(\tilde{\beta}_2)$, your estimate of that matrix?
- c) Let $\hat{\beta}_2$ denote the OLS estimator when no restriction is imposed on β_1 . What will be $V(\hat{\beta}_2)$ and $\hat{V}(\hat{\beta}_2)$? Why is $\tilde{\beta}_2$, in general, more efficient than $\hat{\beta}_2$ when the restriction is true.
- d) Is there any special case in which $\tilde{\beta}_2$ will *not* be more efficient than $\hat{\beta}_2$ even though the restriction $\beta_1 = 1$ is true? Explain briefly.

 [32 marks]
- 3. Consider the linear regression model $y = X\beta + u$, where there are N observations and k regressors. Assume that the regressors are random, the disturbances are independently distributed with mean zero and the same finite variance, and the probability limit of $X^{\top}X/N$ is the positive definite matrix $S_{X^{\top}X}$.

Under standard assumptions, each of the quantities below is of some stochastic order in the sample size. Thus each of them is $O_p(N^c)$ for some value of c which varies from case to case.

- a) Precisely what is the value of c (or, equivalently, the value of N^c) for each of the following quantities?
 - i. $\hat{\beta} \beta_0$, where $\hat{\beta}$ is the OLS estimator and β_0 is the true parameter vector.
 - ii. $\boldsymbol{X}^{\top}\boldsymbol{u}$.
 - iii. $\boldsymbol{u}^{\top} \boldsymbol{M}_{\boldsymbol{X}} \boldsymbol{u}$, where $\boldsymbol{M}_{\boldsymbol{X}} = \mathbf{I} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top}$.
 - iv. $\boldsymbol{u}^{\top} \boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{u}$, where $\boldsymbol{P}_{\boldsymbol{X}} = \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top}$.
 - v. $\mathbf{y}^{\top} \mathbf{M}_{\mathbf{X}} \mathbf{y} / (N k)$.
- b) Now consider the case in which $\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \mathbf{u}$, where the notation should be obvious. Let \mathbf{M}_1 denote the matrix that projects orthogonally off $S(\mathbf{X}_1)$. Precisely what is the value of c (or, equivalently, the value of N^c) for each of these two quantities?
 - i. $\boldsymbol{y}^{\top} \boldsymbol{M}_1 \boldsymbol{X}_2 (\boldsymbol{X}_2^{\top} \boldsymbol{M}_1 \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2^{\top} \boldsymbol{M}_1 \boldsymbol{y}$ when $\boldsymbol{\beta}_2 = \boldsymbol{0}$.
 - ii. $\boldsymbol{y}^{\top} \boldsymbol{M}_1 \boldsymbol{X}_2 (\boldsymbol{X}_2^{\top} \boldsymbol{M}_1 \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2^{\top} \boldsymbol{M}_1 \boldsymbol{y}$ when $\boldsymbol{\beta}_2 \neq \boldsymbol{0}$.

[36 marks: 22 for a); 14 for b)]