Queen's University School of Graduate Studies and Research Department of Economics

Economics 850 Fall, 2019

Professor James MacKinnon

Midterm Examination

October 29, 2019. Time Limit: 80 minutes

Please answer all questions. The marks for each question are shown in square brackets. All answers should be as short as it is reasonably possible to make them.

- 1. You estimate a regression model and obtain a vector of OLS estimates $\hat{\beta}$. The disturbances u_t are assumed to be independent but possibly heteroskedastic, with $E(u_t^2) = \omega_t^2$, where the ω_t^2 are unknown.
 - a) How would you estimate $Var(\hat{\beta})$, the covariance matrix of $\hat{\beta}$? For the purposes of this question, any method that is asymptotically valid is fine.
 - b) Let $\gamma = \beta_4 \beta_5$. Using the estimate of $Var(\hat{\beta})$ from part a), construct a 90% confidence interval for γ . Note that 2.7055 is the .90 quantile of the $\chi^2(1)$ distribution. Your interval should depend on this number.
 - c) Using the estimate of $Var(\hat{\beta})$ from part a), write down a Wald statistic for testing the joint null hypothesis that $\beta_3 = 0$ and $\gamma = 0.5$. What distribution will this test statistic follow asymptotically under the null?
- 2. Consider the linear regression model

$$y = X\beta + Z\gamma + u, \tag{1}$$

where the $n \times k$ and $n \times l$ matrices \boldsymbol{X} and \boldsymbol{Z} satisfy standard assumptions for consistency and asymptotic normality, and the elements of the n-vector \boldsymbol{u} are independent and identically distributed.

- a) Write down an FWL regression and use it to obtain an expression for the OLS estimator $\hat{\gamma}$.
- b) Write down a test statistic for $\gamma = 0$. Does it have a known distribution in finite samples under the stated assumptions? Does it have a known asymptotic distribution? In each case, what is the distribution if it is known?
- c) Under the null hypothesis that $\gamma = \mathbf{0}$, the test statistic of part b) is $O_p(n^p)$. Under the alternative that $\gamma = \gamma_0 \neq \mathbf{0}$, it is $O_p(n^q)$. What are the values of p and q?

- d) Suppose that you reject the null hypothesis $\gamma = \mathbf{0}$ whenever the test statistic exceeds a critical value C. Now imagine graphing the probability that the test rejects the null against the sample size n, for given $\gamma_0 \neq \mathbf{0}$. What can you say about the shape of this graph?
- 3. Consider the linear regression model

$$y = X\beta + u, (2)$$

where X is exogenous and the data are assumed to be generated by a special case of this model with $\beta = \beta_0$. Let $\hat{\beta}$ denote the OLS estimator.

- a) Show that $\hat{\boldsymbol{\beta}} \boldsymbol{\beta}_0 = \boldsymbol{D}\boldsymbol{u}$ for a particular choice of the matrix \boldsymbol{D} .
- b) What is the finite-sample distribution of $\hat{\beta}$ if the vector u follows the multivariate normal distribution with mean vector $\mathbf{0}$ and covariance matrix $\mathbf{\Omega}$?
- c) What restrictions must be imposed on the matrix Ω for $\hat{\beta}$ to be more efficient than any other unbiased linear estimator of β ?
- d) Now consider another unbiased linear estimator $\tilde{\boldsymbol{\beta}}$, which can be written as $\boldsymbol{A}\boldsymbol{y}$ with $\boldsymbol{A}\boldsymbol{X}=\mathbf{I}$. We can always write $\tilde{\boldsymbol{\beta}}=\hat{\boldsymbol{\beta}}+\boldsymbol{v}$. Show that the covariance matrix of \boldsymbol{v} and $\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_0$ is a zero matrix when the restrictions of part c) are satisfied.

[34]