Economics 850 Fall, 2024

Assignment 3

Due: November 14, 2024

- 1. Suppose that a test statistic follows the Student's t distribution with 6 degrees of freedom under the null hypothesis that a coefficient equals zero. The realized value of the test statistic is -1.97.
 - a) What is the P value for a one-tailed test when the alternative is in the upper tail?
 - b) What is the P value for a one-tailed test when the alternative is in the lower tail?
 - c) What is the P value for a two-tailed test?
 - d) Generate 999 realizations of a random variable that follows the standard normal distribution, and plot the resulting empirical distribution function.
 - e) Let z_i denote the i^{th} realization of the random variable of part d). Use the z_i along with 999 realizations of another random variable to generate 999 realizations t_i of a random variable that follows the t(6) distribution. Plot the resulting EDF on the same axes. Is there anything in the figure that is worth remarking on?
 - f) Based on the EDF of part e), what is the P value for the one-tailed test of part a) where the alternative is in the upper tail? What is the P value for the two-tailed test of part c)? How do these simulated P values compare with the ones you obtained previously?

2. Recall that

$$\sinh(x) = \frac{1}{2} (\exp(x) - \exp(-x)), \text{ and}$$

 $\sinh^{-1}(y) = \log(y + (1 + y^2)^{1/2}).$

Both sinh and its inverse are monotonically increasing functions. Suppose you estimate a nonlinear model and obtain an estimate $\hat{\beta} = 2.3364$ with a standard error of 0.3832. However, you are really interested in $\gamma = \sinh^{-1}(\beta)$.

- a) Calculate $\hat{\gamma} = \sinh^{-1}(\hat{\beta})$ and its standard error using the delta method.
- b) Construct a .95 confidence interval for γ based on inverting a t statistic for γ . Is this interval symmetric around $\hat{\gamma}$? Explain.
- c) Construct a .95 confidence interval for γ based on inverting a t statistic for β . Is this interval symmetric around $\hat{\gamma}$? Explain.

- 3. You wish to make inferences about a parameter θ . Your estimate is -0.15013126, and the standard error is 0.09521909. The file bootstrap.csv contains 999 bootstrap estimates of θ , along with an asymptotic standard error for each of them.
- a) Theory suggests that t-statistics should in this case approximately follow the t(11) distribution. Under this assumption, form a 95% confidence interval for θ .
- b) Compute the bootstrap standard error based on the numbers given in bootstrap.csv, and use it to form a 95% confidence interval for θ . Is this interval longer or shorter than the one from part a)?
- c) Use the numbers in bootstrap.csv to compute equal-tail and symmetric bootstrap P values for the hypothesis that $\theta = 0$.
- d) Use the numbers in bootstrap.csv to compute a 95% studentized bootstrap confidence interval for θ . How does it compare with the intervals in parts a) and b)? Can you explain the differences?

[34]