Economics 850 Fall, 2024

Assignment 2

Due: October 10, 2024

- 1. The file house-price-data.csv contains 546 observations, as described in the file house-price-info.txt.
 - a) Regress the logarithm of the house price on a constant, the logarithm of lot size, and the other ten explanatory variables. Report the OLS estimates, standard errors (based on the assumption that the disturbances are IID), t-statistics, and P values.
 - b) One of the explanatory variables is the number of storeys, which can take on the values 1, 2, 3, and 4. A more general specification would allow the effect on log price of each number of storeys to be different. Test the original model against this more general one using an F test. Report the test statistic, the degrees of freedom parameters that you used, and the P value. Is the test you performed exact without any additional assumptions? Explain.
 - c) What is s, the standard error of the regression? Test the hypothesis that $\sigma = 0.20$ at the .05 level under the assumption that the disturbances are normally, identically, and independently distributed with variance σ^2 . Be sure to report a P value for the test. Is the test you performed an exact test? Explain why or why not. **Hint:** How is the quantity $\mathbf{y}^{\top} \mathbf{M}_{\mathbf{X}} \mathbf{y} / \sigma_0^2$ distributed under the specified assumption, if σ_0 is the true value of σ ?
 - d) Using the same data, model, and assumptions as in part c), test the hypothesis that $\sigma \leq 0.20$ at the .05 level. Be sure to report a P value for the test.
 - e) Estimate the model again using data for only the first 540 observations. Use those estimates to forecast the log prices for the last 6 observations. What are the standard errors of these 6 forecasts? What are the associated 95% forecast intervals? Note that it is possible to obtain both the forecasts and the standard errors by running a single regression with 546 observations.
- **2.** Consider the linear regression model with N observations,

$$\mathbf{y} = \delta_1 \mathbf{d}_1 + \delta_2 \mathbf{d}_2 + \mathbf{u}, \ \mathbf{u} \sim \text{IID}(\mathbf{0}, \sigma^2 \mathbf{I}).$$
 (1)

The two regressors are dummy variables, with every element of d_2 equal to 1 minus the corresponding element of d_1 . The vector d_1 has N_1 elements equal to 1, and the vector d_2 has $N_2 = N - N_1$ elements equal to 1. You can think of $d_{1i} = 1$ as denoting control observations and $d_{i2} = 1$ as denoting treated observations.

a) Suppose the parameter of interest is $\gamma \equiv \delta_2 - \delta_1$. Derive the true standard error of $\hat{\gamma}$ (that is, the standard error when σ^2 is known) and write it as a function of σ , N, and N_2 . **Hint:** Rewrite regression (1) so that γ is estimated directly.

- b) Suppose the data for regression (3) come from a survey that you design and administer. If you can only afford to collect 900 observations, how should you choose N_1 in order to estimate γ as efficiently as possible?
- c) Suppose that X, a matrix of regressors that do not vary systematically with the sample size N, is added to regression (3), so that it becomes

$$y = \delta_1 d_1 + \delta_2 d_2 + X\beta + u. \tag{2}$$

What is the true variance of $\hat{\gamma}$ in this case? Write this variance as a function of N and N_2 using same-order notation. Of what order in N is this variance if N_1 is chosen optimally? Will this variance tend to 0 as $N \to \infty$ if N_2 is held fixed? Explain.

3. Consider two linear regressions, one restricted and the other unrestricted:

$$y = X\beta + u; (3)$$

$$y = X\beta + Z\gamma + v. (4)$$

- a) Show that the SSR from OLS estimation of (3) is always equal to or greater than the SSR from OLS estimation of (4).
- b) The OLS estimates from (3) and (4) are $\tilde{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{\beta}}$, respectively. Under the assumption that the disturbances in (3) and (4) are independently and identically distributed, what are $Var(\tilde{\boldsymbol{\beta}})$ and $Var(\hat{\boldsymbol{\beta}})$?
- c) Show that, when $X^{\top}Z = 0$, $\tilde{\beta} = \hat{\beta}$.
- d) In general, $\operatorname{Var}(\hat{\boldsymbol{\beta}}) \neq \operatorname{Var}(\hat{\boldsymbol{\beta}})$. But we saw in c) that $\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}$ when $\boldsymbol{X}^{\top}\boldsymbol{Z} = \boldsymbol{0}$. How can the same estimates have two different covariance matrices? Which one is correct? **Hint:** Think of \boldsymbol{u} in (3) as equal to $\boldsymbol{Z}\boldsymbol{\gamma} + \boldsymbol{v}$ in (4). What would happen if all the variation in \boldsymbol{u} came from variation in \boldsymbol{Z} ?